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Abstract—The interaction between technology and healthcare
has a long history. However, recent years have witnessed the
rapid growth and adoption of the Internet of Things (IoT)
paradigm, the advent of miniature wearable biosensors, and re-
search advances in Big Data techniques for effective manipulation
of large, multiscale, multimodal, distributed and heterogeneous
data sets. These advances have generated new opportunities
for personalized precision eHealth and mHealth services. IoT
heralds a paradigm shift in the healthcare horizon by providing
many advantages, including availability and accessibility, ability
to personalize and tailor content, and cost-effective delivery.
Although IoT eHealth has vastly expanded the possibilities to
fulfill a number of existing healthcare needs, many challenges
must still be addressed in order to develop consistent, suitable,
safe, flexible and power-efficient systems that are suitable fit
for medical needs. To enable this transformation, it is necessary
for a large number of significant technological advancements in
the hardware and software communities to come together. This
keynote paper addresses all these important aspects of novel IoT
technologies for smart healthcare-wearable sensors, body area
sensors, advanced pervasive healthcare systems, and Big Data
analytics. It identifies new perspectives and highlights compelling
research issues and challenges such as scalability, interoperability,
device-network-human interfaces, and security, with various case
studies. In addition, with the help of examples, we show how
knowledge from CAD areas such as large scale analysis and
optimization techniques can be applied to the important problems
of eHealth.

I. INTRODUCTION

Healthcare research brings together a wide range of disci-
plines and fields, in such a way that scientist in medicine,
microbiology, biomedical engineering, computer science, and
big data analytics frequently find themselves working and
collaborating on related projects. Physicians and microbiolo-
gists work together on laboratory studies and molecular-level
diagnostics, in order to maintain or improve patient health
[1]. Biomedical engineers use microfluidics and biosensors to
engineer new medical tools, and to create novel diagnostic
and therapeutic approaches. Computer scientists work to an-
alyze the behaviors of diseases, and algorithmically predict
infections based on symptoms through the use of computer
systems and artificial intelligence. Data scientists, meanwhile,
conduct pharmaceutical research on cures for diseases such as
cancer and Ebola, by collaborating with hospitals and clinics
to gather data on healthcare, geolocations, and other related
fields. Considering all these areas of expertise together, it

becomes clear that many gaps remain between them; these
gaps present major technological challenges in the way of the
development of a unified and highly adaptive framework for
healthcare. In our view, the most direct way to develop this
framework is to construct an Internet of Things (IoT)-based
cyberphysical solution, in order to facilitate breakthroughs in
all areas mentioned above.

Advances in the IoT help create significant advances in
healthcare. For instance, technologies such as microfluidic
biochips and wearable biosensors can improve clinical diag-
nostics in a variety of applications, from the laboratory to
the hospital. In the foreseeable future, IoT-enabled devices
will allow health providers to routinely assess patients who
suffer from breast, lung, and colorectal cancers, and perform
point-of-care molecular testing as an aspect of standard care.
This will help provide physicians with the information they
need to create truly data-driven treatment plans, significantly
improving the chance of a successful recovery. When these
repeatest tests are time-stamped, location-tagged, and also
tagged with data on the testing environment and other sit-
uational information, as well as personal information such
as age, weight, height and gender, a data fabric will begin
to take shape, spotlighting not only the patients condition,
but also overall patterns in the population as a whole (for
example, helping predict an outbreak of an epidemic). In short,
IoT-enabled healthcare (eHealth) can move disease research
forward, enable more accurate diagnoses at the point of care,
and speed up the development of beneficial pharmaceuticals. It
should be noted that IoT eHealth is not just the simple stack of
different worlds. Instead, these pieces are networked together
in order to assess, predict, and adapt in close to real-time. The
vision for such a system is as follows:

• eHealth will dynamic process queries about patients at
the genomic (e.g., DNA methylation profile), cellular
(e.g., blood cells), and organ levels (e.g., kidney activity),
across a wide array of wearable and microfluidic biosen-
sors. This system will enable an even greater number
of IoT-enabled collaborative experiments to take place
in real time, as more labs and researchers collaborate
to share data, provide mutual guidance, and leverage
this shared database to inform judgments on follow-up
practices and procedures in the biochemical realm.
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• eHealth will cumulatively develop and improve the ac-
curacy of healthcare decision making, by utilizing the
big data infrastructure to construct genomic-based patient
models, through the use of efficient deployments of real-
time pattern recognition techniques.

• eHealth will roll out a physical-aware (self-adaptive)
healthcare solution, which will connect cyberphysical
integration with big-data infrastructure, and will reconfig-
ure its nodes (i.e., modify the properties of implantable
devices used to administer specialized medical therapies)
in response to dynamic restructuring of computational
models, which can be tailored by human intervention or
self-driven learning. This capability will streamline the
coupling of patient-related healthcare data with personal-
ized treatment, and allow thousands of nodes to correlate
among themselves.

As the above vision is realized, the benefits of adopting IoT
eHealth can be summed up as follows (see Fig. 1) [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10]:

• All-Encompassing: Irrespective of whether people use
IoT eHealth to improve their health, exercise, safety, or
beauty, it has holistic value for everyone.

• Resiliency: The eHealth framework can also be self-
learning and resilient to inaccuracies.

• Seamless Fusion with Different Technologies: IoT eHealth
seamlessly and simply integrates different technologies.

• Big Data Processing and Analytics: IoT eHealth can
quickly and effectively process, analyze, and manipulate
complex data collected by sensors. Its processing power
enables it to extract actionable information from health
data.

• Personalized Forecasting: IoT, when used with big data
analytics, can examine a patient's health holistically to
forecast future health concerns before the onset of dis-
ease. As a result, patients can adapt and prevent these
issues problems proactively.

• Lifetime Monitoring: Patients are given comprehensive
data about their past, present, and future health.

• Ease of Use: IoT eHealth can be used with your favorite
wearable device and/or smartphone.

• Cost reduction: loT eHealth streamlines medical services
to avoid duplicative procedures and charges. It also
enables patients to more closely monitor their health to
determine if medical attention is needed.

• Physician Oversight: loT eHealth provides doctors with
their patients health status in real-time, saving them time
and effort on examinations. Physicians can oversee more
patients at a time, although many offices will need to
adapt to take advantage of loT eHealths real-time patient
data.

• Availability and Accessibility: Doctors and patients have
access to eHealth data and services anytime, and any-
where. For example, IoT eHealth provides 24/7 online
access to health specialists like doctors, dermatologists,
and many other medical professionals.

• Efficient Healthcare Management: IoT gives patients the
power to view their health status at any time. Physicians
can use that information to easily monitor patients health.

• International Impact: Medical professionals around the
world have connected through the IoT eHealth ecosystem,
giving patients greater access to international facilities
and physicians.

This paper presents the challenges and emerging solutions
for IoT-enabled eHealth, and discusses the underlying reasons
behind recent success in deploying IoT solutions for health-
care.

The rest of this paper is organized as follows. In Section
II, we discuss the challenges and barriers that IoT eHealth
must overcome in order to grow further. In Section III, we
review the evolution of IoT eHealth systems and summarize
the fundamental directions. Section IV describes a three-layer
architecture of an IoT eHealth platform. Next, in Section V,
we describe the application of IoT eHealth using a real-life
case study that demonstrates the role of IoT in the medical
domain. Finally, in Section VI, we conclude this paper with a
discussion of future challenges and opportunities.

II. IOT EHEALTH CHALLENGES

IoT eHealth seamlessly connects patients, clinics, and hos-
pitals across a vast variety of locations to coordinate and
orchestrate healthcare. There are, however, many research
issues that must be carefully addressed before it can become
viable for mainstream deployment (see Fig. 1).

A. Design Automation Challenges

The design challenges for IoT eHealth systems arise from
a combination of the following characteristics [11], [1]:

• Cross-domain: IoT eHealth is about the intersection of
many fields that spans bioengineering, embedded system,
to network design, and to data analytics. Therefore,
modeling, design, verification, and monitoring of such a
heterogeneous system requires multi-disciplinary knowl-
edge.

• Heterogeneous: IoT eHealth spans the cyber and physical
worlds. Therefore, it involves many components such as
hardware and software, network, etc. As a result, it is
very important to pay detailed attention to interfacing and
interoperability of such a holistic system.

• Dynamic environments: IoT eHealth incorporates a sig-
nificant dynamic environment. Therefore, the system
should be able to evolve continually.

• Distributed systems: IoT eHealth is built on top of
many layers and physically and/or temporally separated
components that are tightly networked.

• Large-scale: IoT eHealth is a swarm of connected de-
vices, network components, computation systems that
must deal with data volume, variety, velocity, and ve-
racity.

• Human aspects of the design: Since IoT eHealth is used in
close collaboration with humans, it is very important that
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Fig. 1: (a) IoT eHealth benefits, (b) IoT eHealth challenges.

the design of such a system consider the role of humans
as well as human interfacing.

• Learning-based: IoT eHealth should be designed based
on suitable data-driven learning techniques to handle the
varying dynamics of cyber and physical components.

• Time-aware: Spatial and temporal variations in the dy-
namics of the cyber and physical components of a IoT
eHealth must also be addressed.

B. Data Management

In the healthcare sector, IoT eHealth faces many of the
same data management challenges as in other fields [1]. One
distinguishing factor, however, is the fact that eHealth data
originates from medical sensors worn by human subjects,
and the human body is a constantly changing system. Thus,
from an IoT eHealth perspective, an ongoing flux of data will
continually flow inward from edge sensors via fog computing
1 nodes. On a positive note, sensors and computing are both
declining in cost, making big data more cost-effective to
be collected in a brief timeframe. IoT eHeath has evolved
to deal with the complicated nature of these data, even as
their variety, volume and velocity [12], [13], [1], [14] have
continued to increase. At the same time, IoT faces a challenge
almost unknown 10 years ago: that of data variety. Dozens of
healthcare applications targeted at end users use their own
data format; for example, ECG data is often encoded in
XML, while camera-based IoT devices typically record data
in a variety of image formats [15]. Meanwhile, various edge
computer manufacturers use their own data formats, which
can also vary by customer. Data models on the cloud also
vary widely, creating a desperate need for standardization.

1Fog or edge computing refers to extending cloud computing to the edge
of network.

Difficulties related to data volume and velocity, on the other
hand, are more related to ability of the fog node hardware to
acquire, analyze, store and transmit data from medical devices
(which could be located at hospitals or clinics, or carried with
the patient) at high fidelity and resolution. This creates a clear
demand for fog administrators capable of supervising the data
flux between computing in the cloud and the fog.

C. Scalability

In order to engineer a healthcare IoT on a smaller scale,
all users will need to have direct access to medical services
from portable devices such as smartphones. These services
will need their own sensors specialized for data gathering,
along with secure central servers for handling user requests.
Such an arrangement can also be scaled up to the size of
a whole hospital, enabling patients throughout the facility to
use their mobile devices to get updates on their care, monitor
their status, and utilize other medical services. In fact, the
model could be scaled up even further, to the scale of an
entire city, provided that sensors and antennae exist to collect
the needed data, smart algorithms and APIs exist to process
it (and to analyze users requests), and intelligent interfaces
exist to pass along real-time information on the status of
user requests. In such a smart city, enabled for eHealth,
smartphones would handle all the collection, processing and
analysis of data through the use of apps, which would also
gather and display feedback on patients health status, as well
as the results of medical checks. This would save valuable
time that would otherwise be spent waiting for appointments
and results, and give patients direct access to relevant medical
resources, and raise efficiency; all the while strengthening trust
between patients and their healthcare providers [16], [1].
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D. Interoperability, Standardization and Regulatory Affairs

The prospect of standardization raises a number of concerns
for the IoT eHealth [1]. End users, service providers, and
manufacturers all desire operability both within individual IoT
domains, and among them. This creates complex difficulties,
however, because the range of disciplines captured by IoT
are regulated by a diverse group of regulatory agencies. This
complexity is magnified still further in the field of IoT eHealth,
where medical standards necessitate particularly strict regula-
tions. In the USA, for instance, wireless medical devices are
standardized and regulated by no less than three agencies [17]:
I) the Food and Drug Administration (FDA), ii) the Centers for
Medicare and Medicaid Services (CMS), and iii) the Federal
Communications Commission (FCC). Companies who aim to
develop IoT applications in the medical area must consider the
rules and guidelines of all three of these regulatory bodies.
In fact, the IoT eHealth path to market will pass through a
complicated multi-agency regulatory environment in the US,
as well as in other areas of the globe.

E. Interfaces and Human-Factors Engineering

The interface between front-end technologies such as sen-
sors, computers, tablets and other mobile devices provides one
of the most immediate challenges for IoT eHealth develop-
ment. End users (many of whom have little or no knowledge
of wireless networking, sensor syncing and similar operations)
will be required to self-train in order to use the the devices
correctly. In addition, many of the devices will be deployed
in remote locations; elderly populations in particular will be
some of the most notable IoT users, highlighting a clear
need for eHealth systems that can be deployed simply and
autonomously. Expert involvement will need to be minimized
through the use of patient-friendly interfaces. One possible
approach is to utilize participatory design [18], and involve
stakeholders and/or end users in the feedback process, in order
to make the devices more comfortable and enjoyable to use.

F. Security and Privacy

IoT eHealth devices, like all networked devices, will present
some level of potential risk to the security and privacy of end
users, through the use of unauthorized authentications. This
is an especially significant concern in the area of healthcare,
where personal safety could be put at risk. In fact, the entire
lifecycle of IoT eHealth is built around privacy and security,
from specification generation and all the way to implemen-
tation and deployment [19], [20], [21], [22], [23], [24], [25],
[26], [27]. Even so, a holistic multi-layered set of strategies
will be necessary in order to overcome the complex security
challenges of engineering an IoT healthcare ecosystem. This
approach can be described as follows [1]:

• Device layer: Connected devices such as sensors, med-
ical devices, gateways, fog nodes, and mobile devices,
when are involved in capturing, aggregating, processing
and transferring medical data to the cloud. Widespread
forms of attacks in the device layer include tag cloning,

spoofing, RF jamming, cloud polling and direct con-
nection. In a cloud polling attack, network traffic is
redirected in order to inject commands directly to a
device [20], [28], through the use of Man-in-the-Middle
(MITM) attacks as well as changes to domain name
system (DNS) configuration. The most effective defense
against this attack is an ongoing policy of evaluation and
verification of certifications, at the device level, in order
to ensure that every certificate actually belongs to the
eHealth cloud. A direct connection attack, meanwhile,
involves the use of a Service Discovery Protocol like
Universal Plug and Play (SSDP/UPNP), or the on-board
properties of BLE, to locate and target IoT devices.
This type of attack is best prevented by a policy of
ignoring and blocking unauthenticated requests at the
device level, through the use of robust cryptographic
algorithms, along with a key management system. Other
device-layer security measures include identity, authen-
tication, and authorization management, secure booting
(i.e., prevent unauthorized applications to be executed),
application sandboxing, whitelisting, fine-grained access
control capability of resources, protection of data during
capture, storage, and transit, traffic filtering feature, fault
tolerance, password enforcement policies, secure pairing
protocols, and secure transmission mechanisms [28], [29].
It is also important to take into account the extremely
limited memory, processing capabilities, power resource,
network range, embedded operating systems, and thin
embedded network protocol stacks of many devices while
implementing security algorithms in an IoT Health sys-
tem [24].

• Network layer: In this layer, a multitude of diverse
network protocols, including Wi-Fi, BLE and ZigBee can
be leveraged to establish appropriate connections among
sensors. Eavesdropping, Sybil attacks, Sinkhole attacks,
Sleep Deprivation attacks, and Man-in-the-Middle attacks
are all typical at this level. Thus, the use of trusted routing
mechanisms is crucial, as is the use of message integrity
verification techniques (using hashing mechanisms like
MD5 and SHA) and point-to-point encryption techniques
based on cryptographic algorithms. These algorithms fall
broadly into two groups: symmetric algorithms such as
AES, DES, Blowfish, and Skipjack, as well as asymmet-
ric public-key algorithms such as the Rabins Scheme,
NtruEncrypt, and Elliptic Curve Cryptography. As a rule,
symmetric algorithms are less computationally intensive,
making them for low-power 8-bit/16-bit IoT devices. At
the same time, problematic key exchange mechanisms
and confidentiality issues often create difficulties [30].

• Cloud layer: A large body of literature exists on the
security issues involved in the deployment of cloud ap-
plications. Any provider of eHealth products and services
will need to establish an efficient, effective set of tactics
for proactively combating the negative impacts of attacks.
Widespread vulnerabilities in the cloud include Denial-
of-service (DoS) attacks, SQL injections, malicious code
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injections, Spear-Phishing attacks, sniffing attacks, path
traversals, unrestricted file uploading (remote code exe-
cution), cross-site scripting (XSS), Trojan horses, viruses,
and brute-force attacks using weak password recovery
methods [28].

• Human layer: The fundamental principle of IoT eHealth
security is that individuals should receive training on how
and when to avoid disclosing private healthcare informa-
tion. If a knowledgeable group of attackers gains physical
access to an end user's IoT eHealth device, those attackers
could directly pull data from the device's internal memory
and firmware, and modify its settings to obtain partial or
complete control over it. In addition, it will be crucial
to train users to avoid common security pitfalls such
as sharing physical or electronic keys, choosing weak
passwords, or purchasing used medical equipment.

III. FUNDAMENTAL DIRECTIONS

A. From EDA to IoT eHealth

Recently, it has been observed that much of silicon R&D
can be applied to other domains [31]. Over the past decades,
semiconductor companies have invested trillion dollars in the
development of sophisticated EDA tools [32]. The problems
that stand most to benefit from the application of EDA
approaches are no longer to be found only on a silicon
chip, but in the large-scale issues faced by human society
on the whole. Indeed, although electronics will remain the
primary focus of EDA in the near future, this is nonetheless
one of the first engineering disciplines that has emphasized
an interdisciplinary approach. The work of chemists, device
physicists, electrical engineers, computer scientists, applied
mathematicians, operations researchers, and optimization ex-
perts has influenced abstractions, computational models, algo-
rithms, methodologies, and tools. Nowadays, EDA tools can
synthesize, optimize, simulate and verify data across all levels
of a given abstraction, automatically transforming a complex
system-on-chip design from a high-level functional description
to a detailed geometric one. A key research question that
emerges is: how can we utilize the research approaches and
concepts of EDA for design automation (DA) in new domains
that are now emerging, in order to solve concrete and critical
problems of the modern world?

Pioneering work has recently applied knowledge from VLSI
to the important area of Proton radiation cancer therapy [32].
It has been shown how EDA can move beyond its E-roots
and how the field can evolve and grow. Another interesting
example in such area is applying EDA to sport analytics. For
instance, in recent years, many teams in American National
Football League have significantly shown interest in utilizing
data analytics for sports applications [33]. Not surprisingly,
traditional EDA algorithms have considerable overlap with
the algorithm techniques used in sports applications. For
example, Monte Carlo simulation can be utilized in and playoff
prediction tools. Alternatively, model-order reduction can be
used to model the actual values of players [33]. In this regard,
it has been shown in [33] how the knowledge from EDA can

be exploited in sport analytics. Yet another application area of
EDA lies in the design of microfluidic biochips [34].

B. From Benchtop to Lab-on-Chips

Point-of-care (POC) tests have the potential to improve the
management and treatment of infectious diseases, especially
in resource-limited settings. An example of an emerging tech-
nology that has achieved remarkable success in miniaturizing
POC testing is lab-on-chip (LoC) technology [35]. The basic
idea of an LoC (also known as a microfluidic biochip) is to
integrate all necessary elementary functions for biochemical
analysis using microfluidics technology; such functions in-
clude assay operations, detection, and sample preparation [34].
A large number of design-automation techniques have been
proposed to optimize the design and operation of biochips
and therefore to facilitate the adoption of this microfluidics
technology in POC settings [36]. Methodologies of design
automation for LoCs are highlighted in Section III-C.

There are two main types of biochips according to the mech-
anism of biochemical liquid manipulation: continuous-flow
microfluidic biochips (CMFBs) [37] and digital-microfluidic
biochips (DMFBs) [35]. Continuous-flow microfluidic tech-
nology is based on the the continuous flow of liquid through
microfabricated channels and the flow is governed by pressure
sources at the inlets. On the other hand, DMFBs allow
the manipulation of discrete volumes (droplets) of liquids
on a 2-D array of electrodes. Biochemical droplets can be
transported over the array by applying a software-driven
sequence of voltage actuations through the electrodes; such
a transportation mechanism is known as electrowetting-on-
dielectric (EWOD) [35].

An example of microfluidic biochips, specifically DMFBs,
for POC diagnostics is the application of a colorimetric
assay for the in vitro measurement of glucose in human
physiological fluids [38]. The on-chip process includes: (1)
loading of pre-diluted samples and reagents; (2) dispensing
analyte and reagents; (3) droplet transportation; (4) mixing
of analyte solutions; (5) detection of reaction result using an
absorbance-measurement sensor. The reaction forms a violet-
colored compound that emits light with intensity proportional
to the rate of reaction. With an adequate EDA technique, these
steps can be optimized and automated to allow POC glucose
test.

C. EDA Support: From SoC to LoC

Emerging technologies used in healthcare, such as LoCs, are
maturing rapidly thanks to advances in fabrication techniques.
These end-devices are key to the deployment of IoT-based
eHealth solutions. Because of the trend of increasing biochip
complexity and the integration of an increasing number of
on-chip devices (e.g., heaters), manual design of biochips is
no longer practical. In this context, design-automation tools
can play a key role to ensure that manufactured biochips are
versatile and can be reliably used in healthcare settings.

Motivated by advances in CAD support for the semiconduc-
tor industry, efforts have been made for automated design
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of LoCs such that users, e.g., clinicians and chemists, can
adapt easily to this technology. Design automation (synthesis)
solutions for LoCs includes the following categories:

• Architectural-level synthesis, in which the major goal is
to schedule corresponding biochemical operations and to
bind each operation to a limited set of resources (e.g.,
magnet, heater, and mixer) to satisfy objectives such as
minimization of execution time [39], [40], [41], [42].

• Physical-level synthesis, which addresses the placement
of resources and the routing of droplets to satisfy ob-
jectives such as area minimization or throughput max-
imization. Note that droplet routes during biochemical
execution are viewed as virtual routes, which makes
droplet routing different from the classical VLSI routing
problem [43], [44], [45], [46], [47].

• Chip-level synthesis, which is focused on optimization of
LoC control and electrical/pneumatic signal planning. In
DMFBs, chip-level synthesis handles electrode address-
ing and wire routing to satisfy objectives such as cost-
effectiveness and reduction of manufacturing complex-
ity [48], [49].

• Fault tolerance-aware synthesis, which ensures that the
execution of a biochemical assay is not affected by de-
fects2 or operational faults [50], [51], [52]. In this context
and similar to fault tolerance in VLSI systems, fault
models are utilized to capture the effect of such defects,
whereas real-time recovery from associated errors can
be performed with the aid of on-chip detectors through
cyberphysical adaptation [53], [54], [55], [56].

• Synthesis for microbiology applications, which enables
realistic modeling of biomolecular protocols and provides
optimization methodologies for the realization of such
protocols [57], [58], [59], [60].

Such a design-automation methodology can also be applied
to other technologies such as biosensors to foster their adop-
tion in eHealth.

D. Combined Model: Model-Based vs Data-Driven Design

Model-based design, which is widely used in industry, starts
with an abstract mathematical model in order to analyze
the behavior of the design. After bugs are removed, the
focus moves to implementation details and sub-components.
However, this methodology might not be very effective in the
IoT era [11], due to the fact that eHealth systems usually are
operated in highly variable and uncertain environments. Due
to this uncertainty, the system should be able to learn from
data in order to adequately evolve, and adapt itself and react
to the events.

IV. ARCHITECTURE OF AN IOT EHEALTH ECOSYSTEM

In this section, we explain the general architectural elements
required for IoT eHealth systems [61], [62], [63], [64], [65],
[66], [67], [68]. As shown in Fig. 2, this system consists of

2A possible cause of defects is dielectric breakdown which is caused by
high-voltage actuation.

three main layers [1]: IoT eHealth Device Layer, IoT eHealth
Fog Layer and IoT eHealth Cloud Layer.

A. IoT eHealth Device Layer

With a rich set of IoT medical devices, patients can monitor
their health data in real time on any computer or mobile
device and their information is securely synchronized with
a cloud-based eHealth platform [69]. All that is needed is
a connection with appropriate communication protocol to a
gateway or fog node [1]. In this context, there is a vast variety
of Personal Area Networks (PAN) and WSN protocols. Fig.
3 and Fig. 4 show the IoT eHealth protocol stack. Note that
the selection of the best connectivity and the communication
protocol depends on the application and the specific use-case.
For example, a Wi-Fi connection is ideal when transferring
many documents. However, BLE works well for short-range,
low-power communications. The state-of-the-art IoT eHealth
devices is typically classified into two categories:

• Physical sensor: in general, any wired/wireless medical
device can be used in an eHealth ecosystem to track
the physical wellness of patients, and digitally monitor
their health [23]. This includes ECG/EKG monitors [70],
[71], [72], [73], [74], [75], [76], [77], [78], [79], [80],
[81], heart rate monitors [82], [83], glucose monitors
[84], [85], [86], blood pressure monitors [87], [88], [89],
body temperature monitors [90], pulse oximeter [91],
hemoglobin monitor [92], activity monitor [93], smart
shoes [94], smart garments or e-textiles [95], [96], [97],
sleep monitor [98], knee sensor [99], skin conductance
sensor [100], PPG [101], elderly monitor [102], [103],
[104], [105], [106], medication management [107], [108],
food contamination detection device [109], early warning
system [110], [111].

• Virtual Sensors: Virtual sensors use software and mobile
applications to gain patients health and contextual data
from the environment [112], [113], [114], [115]. A virtual
sensor includes many categories such as remote monitor-
ing, remote consultation, diagnostic, patient health record,
nutrition, and medical reference applications.

B. Communications and Connectivity Layer

There is a need to enable multi-protocol data communica-
tion between devices at the edge as well as between endpoint
devices/gateways, the network, and the data center.

1) Proximity networks and local area networks (PAN/LAN):
connect to sensors, actuators, devices, control systems, and
assets, which are collectively called edge nodes. PANs are
usually wireless and more constrained by antenna distance
(and sometimes battery life) than LANs.

2) Wide area networks (WAN): provide connectivity for
data and control flow between the endpoint devices and the
remote data center services. They may be corporate networks,
overlays of private networks over the public Internet, 4G/5G
mobile networks, or even satellite networks.
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C. Edge Computing

Todays eHealth cloud architectures are not designed to ade-
quately handle volume, variety, and velocity of data generated
by eHealth devices [117]. To tackle this issue, there is a
need to revisit the network architecture, pushing certain data,
processing, and services away from the massive centralized
infrastructure of the cloud to the edge of the network where
the data originates. An Edge node (sometimes nicknamed
Fog node) is defined as a device with integrated computing,
storage, and networking. The edge node is inserted between
the cloud and all IoT eHealth devices adds two important
features to the system:

• Real-time analytics and decision making: Some important
applications of IoT eHealth such as Myocardial Infarction
(MI) detection cannot tolerate latency. In these time-
sensitive application, it is a necessity to process and act
on health data in seconds. In such applications, it is
not practical to transfer patients’ sensitive medical data,

vital signs, and bio-signals across a wide geographical
area in the presence of various environmental conditions,
and store and process them in different data centers or
the cloud. Instead, moving intelligence to the edge is
a promising approach to eliminate latency and evolve
IoT eHealth solutions. In this approach, an edge node
with localized processing capability enables us to respond
more quickly than the cloud by making time-sensitive
decisions more closer to the source of data. Thereby, this
solution results in a more efficient solution that can better
handle low-latency demands of eHealth applications.

• Traffic reduction on overburdened networks: Considering
the limited network bandwidth, it is not practical and in
certain use cases even not necessary to transfer enormous
volume of raw big data from millions of eHealth devices
to the cloud. Edge computing reduces the data transport
costs, which can be significant for data-intensive applica-
tions, such as genomic-association analysis, generating
several GBs of raw time-series data within a day. In
this regards, edge nodes can process, filter and compact
the medical data before delivering it to the cloud to
dramatically minimizes bandwidth requirements.

Other important tasks of a fog node are explained below:
• Two-way connectivity: Fog nodes establish a secure reli-

able bi-directional data flowing between eHealth devices
and the cloud platform. An edge node gathers feeds in
real time from health devices using an appropriate proto-
col, and after processing, sends the corresponding sum-
mary periodically to the cloud to facilitate the long-term
data sets aggregation, exploration, analysis and globally
intelligent decision making. On the other hand, it might
also need to receive commands, configuration data, etc.,
from the cloud. Note that the edge node is also dealing
with the compliance challenges associated with connec-
tivity such as protocol translation, security, switching,
routing, and networking analytics. For example, nodes
might not be assigned with a public IP address. Therefore,

7
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to enable reachability from the cloud, an edge node can
rely on different mechanisms such as WebSocket, MQTT
(Message Queue Telemetry Transport), and IP tunneling.

• Time-series data capture: Edge nodes can either use an
interrupt or a polling mechanism for data acquisition.
Depending on the application, time precision might also
be required to be able to extract the trend over time.
In such a case, accuracy is increased if the time stamp
is generated in close proximity to the eHealth device
generating the data. In this regard, edge nodes time-stamp
the incoming data and store it in a historian database.

• Transient data storage: Fog nodes are required to provide
a short-time historical storage for eHealth device data.
For example, filtering outliers of data (i.e., in the case of
deviation from normal) depends on previous samples of
the data.

• Device management: This includes device discovery, de-
vice registration, and device control.

• Edge processing: A rich set of applications can be ex-
ecuted on the edge node. For example, edge nodes are
capable of on-demand data cleaning, data normalization,
filtering, data reducing, compressing, integrity check, and
formatting, data sharing, data purging, and data buffering.
An edge node may also include, as an example, signal
processing, concurrent streaming, event handling, embed-
ded web server, embedded WebSocket server, etc.

• Streaming edge analytics: In some eHealth applications
such as anomaly detection, it is a major necessity to
learn actionable insight and actionable information in real
time close to the local context. Keeping this in mind,
edge nodes should be able to analyze the stream of
device and sensor data with millisecond response time.
To do so, edge nodes can incorporate lightweight feature
extraction, data mining, time-series pattern recognition,
machine learning, rule-based event processing, and auto-
mated reasoning.

• Data delivery: Edge nodes can rely on either of the
following message-exchange techniques to deliver the
IoT data: (i) Message-based (ii) Request-based, and (iii)
Publish-Subscribe.

• Security and data protection: To protect patient data,

the fog node offers multi-layer security measures for
authentication, encryption and access control to fully
meet the requirements of FDA standards.

• Flexible integration: Considering the availability of dif-
ferent device vendors and OEMs, edge nodes should
implement a wide-range of interface standards to main-
tain interoperability. To address the integration concern,
edge nodes should be compatible with a large variety of
communication protocols and peripherals (e.g., UART,
SPI and USB), PAN and WSN protocols (e.g., RFID,
BLE, Zigbee, Wi-Fi, 3G/4G, and Ethernet), and wired
protocols (e.g., Ethernet).

• Protocol translation: Another challenge arises from the
fact that there is a large number of communication
protocols at different levels of abstraction as follow:

– Network layer: An IoT eHealth network is scattered
among various networking protocols (e.g., BLE, Zig-
Bee, Wi-Fi). To bridge the gap among these proto-
cols, the edge node needs to convert and translate
the incoming stream to an appropriate format and
propagate it to the destination network.

– Message layer: A large number of application-level
protocols (e.g., MQTT, CoAP and XMPP) or pro-
cessing messages exists. Thereby, it is very crucial
that edge nodes despite the underlying differences
of standards, be able to transfer messages among
different protocols.

– Data annotation layer: Different organizations pro-
posed distinct standards for integration, exchange,
and retrieval of eHealth information (such as HL7
[118]). Whenever it is required, edge nodes should be
capable of understanding, processing, and translating
the data.

D. IoT eHealth Cloud Layer

Cloud-based big-data analytics can be seamlessly utilized
for sophisticated machine learning and data mining, providing
a notable advantage for health researchers. For instance, high-
dimensional Bayesian inference can be used for analyzing
cancer risk or for predicting survivorship [1]. The cloud also
allows us to build progressive models with higher dimensions

8
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(i.e. number of features) over time for each patient. In addition,
it enables us to facilitate our understanding of the evolutionary
changes of diseases.

The cloud platform can benefit from a multi-layer architec-
ture that consists of the following layers (see Fig. 5) [1]:

• Input integration: Integration includes many built-in fea-
tures needed to create a connection between IoT things
such as eHealth devices, sensors, actuators, fog/edge
nodes, BI tools, dashboards, social networks, exter-
nal databases, applications, and the cloud. This layer
delivers ultimate flexibility to select an appropriate
communication method based on different protocols
(e.g., MQTT, WebSocket, Representational State Transfer
APIs, ODBC, JDBC, etc.) that suits the requirements of
the given health application.

• Data lake: James Dixon, the CTO of Pentaho and the
creator of the term data lake, defines this term as: If
you think of a traditional database as a store of bottled
water cleaned and packaged and structured for easy
consumption, the data lake is a large body of water in
a more natural state. The content of the data lake stream
in from a source to fill the lake, and various users of the
lake can come to examine, dive in, or take samples. The
main advantages of a data lake are as follow:

– It is capable of deriving values from many different
data sources.

– It can store and converge both structured and in-
structed data from sensor data, to eHealth documents,
to social media data.

– It can efficiently handle a growing amount of data
by leveraging a distributed file system such as the
Hadoop Distributed File System (HDFS).

– It can process a large and diverse set of data.
– It is very flexible in a way that it can be ex-

tended by several distributed applications to enable
different access and process patterns of the stored
data: batch (MapReduce), SQL Query (Hive, Impala,
Spark SQL), Script (Pig), Stream (Spark), and many
other processing engines.

– It changes the old Early-binding ETL (Extract: Re-
trieving raw data, Transform: Structuring the raw
data and storing it in a data repository, Load: Loading
the structured data for analysis) paradigm of the
traditional databases and data warehouses to process
the data. Indeed, a data lake follows a Late-binding
ELT approach, leading to more flexibility and faster
access to all data at any time responding to any and
all future needs.

• Data warehouse: It is a highly-structured repository used
mainly for reporting and representing an abstracted pic-
ture of the eHealth system. The data stored in this
repository can be uploaded from the data lake or from
the operational systems (such as sales). However, note
that before storing any data, we need to process, model,
and give the data a specific structure.

• Data flow manager: This is software (such as Apache
NiFi) that automates and orchestrates the data flow among
the modules of the cloud.

• User, device and data management: The cloud integrates
data from multiple sources. It captures data from many
fog nodes and stores the data in a safe and secure manner.
In this way, the data is always there to be accessed by
those engaged in patient care. This platform seamlessly
integrates with non-sensor sources such as EHRs, e-
prescriptions, web sources, and more. As a result, pa-
tients, physicians, or any other member of a patients care
team can access vital health data when needed [1]. This
significantly increases collaboration across all disciplines,
increasing the efficiency of the healthcare plan. Moreover,
Cloud-based platforms offer a unified schema to capture
and query transactions. In doing so, versatility to create
new applications is increased. This module is also used to
manage users, groups, devices, and fog nodes, and access
permissions and roles.

• Big data analytics: This is a key component for analyzing
medical data. The use of analytics allows the platform
to use event- and rule-based processing, data mining,
machine learning, and automated reasoning-based algo-
rithms on stored historical records. This way, the platform
can make meaningful insights about patient health. Hav-
ing these early health insights could be a game-changer
for a patient who can begin to take preventative action
against an otherwise fatal ailment. The configurations of
the connected eHealth devices can also be adjusted using
the extracted insights. For instance, users may alter the
frequency and type of information collected, as well as
the multimedia (images and videos) resolution. Note that,
there are two different engines in the analytical module.
The first one handles all requests that are subject to (near)
real-time constrains. The second one deals with batch
data and extracting historical intelligence.

• Output integration: This is typically based on an Enter-
prise Service and Integration Bus such as Apache Camel
with a rich set of protocols (e.g., REST API, Message
Broker, Websocket, etc. ) that enables connection with
any system, application, or portal. It should also be noted
that this module can exploit in-memory databases (such
as Redis and HBase) to answer fast incoming queries by
merging and caching the results from warehouse, data
lake, analytics, etc. However, this database only stores
very recent data and results.

V. CASE STUDY: INTEGRATIVE MULTI-OMIC
INVESTIGATION OF BREAST CANCER

Breast cancer is a disease that involves abnormal changes
in the biological mechanisms of the human cells, e.g., DNA
methylation and gene mutation–such biological mechanisms
are cooperatively responsible for regulating the growth of the
human cells. Since an abnormal change in any mechanism is
usually triggered by the activity of specific genes (also known
as biomarkers), it is necessary to identify these genes to build a
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genomic network, which elucidates the dynamics of the breast
cancer through a multivariate association model.

Our interactive IoT-based framework facilitates the con-
struction of such a disease model using a progressive approach.
Therefore, with the help of several eHealth devices such
as microfluidic biochips, our framework can advance our
understanding of how the breast cancer is initiated and how
cancerous tumors evolve/adapt over time [119]. To motivate
our progressive approach, an example of progressive studies
has been already introduced for investigating metabolic pro-
cesses in biological systems [120].

Herein, we present a simplified case study that elucidates the
need for an integrative multi-omic analysis for investigating
breast cancer [121]. We also explain the role of the proposed
eHealth ecosystem in exploring complex models of such a dis-
ease. A similar framework, known as BioCyBig, has been in-
troduced earlier for multi-omics investigation [122]; however,
BioCyBig depends only on microfluidic nodes for biochemical
analysis and it is therefore limited to clinical diagnostics. The
proposed eHealth architecture, on the other hand, allows real-
time monitoring of cancer disease since it supports a wide
range of eHealth devices (e.g., physical sensors). Hence, the
proposed ecosystem is generic and can seamlessly be adapted
to different classes of healthcare systems [123].

A. Disease Model of Breast Cancer

The following steps need to be performed to identify the
biomarkers of breast cancer: (1) numerous cancerous cells
must be extracted from fresh tumor tissue; (2) these cells
need to be biochemically processed while observing different
aspects of the biological behaviour (e.g., targeting genomic,
epigenomic, proteomic, or metabolic associations) to construct
a precise disease model using the generated multi-omic data.
Note that it is difficult to obtain a large number of samples
from a fresh tissue at the same site or from a single patient

in a single treatment session; such a limitation represents one
of the bottlenecks for today’s analysis techniques. Obviously,
an IoT-enabled eHealth service facilitates “spatial” data inte-
gration and coordination among multiple sites and also allows
“temporal” adaptation in the disease model.

To construct the breast-cancer model, we need to measure
and integrate four types of omic data [122]: common genetic
variants (genome level), DNA methylation (epigenome level),
gene expression (transcriptome level), and protein expression
(proteome level). The objective is to construct a representative
breast-cancer model based on these omics data, where gene
expression is co-regulated by both DNA methylation and
genetic variants. This model can be used as a disease signature
to identify patients with similar tumor characteristics via
clustering techniques. Thus, the model description is given
below:

• [Constraints] Number of cancerous samples extracted
from fresh tumor tissue per site and patient’s condition
over time.

• [Variables] x : Selected gene probes; y : SNPs around
each gene probe per window size3 (genomic data); z :
CpGs around each gene probe per window size (epige-
nomic data); w : protein expression (proteomic data).

• [Output] f : Gene expression (transcriptomic data).
• [Integrative Analysis] Multi-staged, concatenation-

based regression techniques.
Fig. 6 shows the multi-omic analysis flow for breast cancer

investigation [121]—we apply this flow to both cancer and
normal cells for comparison. First, genotyping of tumor sam-
ples is performed to select gene probes and to determine the
associated SNPs per each gene probe within a pre-specified
window size (e.g., 1 MB window). Next, regression techniques

3A window encompassing the gene of interest is measured in terms of
megabases (MBs).
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are applied to assess the association between each expres-
sion probe and the SNPs in single and multivariate models
(e.g., SNP-CpG [124]). The SNPs of probes with increasing
expression activity, such as CYP1B1 gene, may result in
high risks of carcinogenic instances. Likewise, genetic rare
variants (or SNPs) in COMT gene can reduce the metabolism
of carcinogenic product, resulting in a higher level of DNA
damage. Even so, these variations may not increase the risk
of cancer if the DNA-damage repair can adequately absorb
carcinogenic metabolites. In other words, using variations in
genetic and transcriptomic association solely as a signature for
breast cancer could be misleading.

To refine the model, epigenomic and proteomic data must
be integrated in the analysis flow; thus, CpG methylation
data is generated and associated with gene expression. Ac-
cordingly, higher levels of methylation at the XRCC1 gene
and variation in the gene expression of XRCC3 result in
reduced transcription levels, and the repair mechanism may
no longer be able to adequately keep DNA repair at necessary
levels. Even though an inadequate rate of DNA-damage repair
likely indicates a carcinogenic tissue, dysregulated protein
expression of genes in the cell cycle pathway (e.g., CDK1)
may result in a rate of cell replication that is higher than
average and therefore reduces the impact of damaged cells.
Hence, protein-expression analysis is equally important.

To realize the above model, several biochemical assays
can be implemented using microfluidic devices [125]. For
example, to perform epigenetic analysis, microfluidics-based
methylation assays can be employed to study novel DNA
methyltransferase activity or proteins involved in DNA methy-
lation regulation [126]. This study is conducted in two main
steps that can be integrated on the same chip: (1) sample pre-
processing module for on-chip DNA bisulfite conversion; (2)
detection module employing thermal amplification/detection
technique after immobilization with either methyl- or non-
methyl-specific primer for analysis of the DNA methylation
status. By using appropriate EDA tools, our framework can
enable high-throughput bisulfite-based methylation analysis of
thousands of samples concurrently [127].

Similarly, to investigate the dysregulation of protein expres-
sion, the analysis of protein expression is performed using
microfluidic devices [128]. The process involves tumor disag-
gregation into single cells, cell sorting to select only live cells
of a chosen type, and then transferring the cells to individual
analysis chamber and analyzing them to quantify the levels
of selected protein species. Microfluidic fluorescence-based
detection can be employed to monitor the expression of
proteins in vivo. EDA tools can also be developed to automate
this process and allow real-time monitoring of the expression
level.

To improve the early detection of breast cancer, a real-time
pathological study can be launched in parallel to examine
chemicals related to the disease. This study is performed
using IoT-connected biosensors such as electronic noses [129],
which are utilized to monitor the health conditions of cancer
patients. Our eHealth framework can play a significant role in
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Fig. 6: Flow of integrative genomic-association analysis for
breast cancer [121], [122].

recording and analyzing the signals generated by these sensors
in real time. The findings of this pathological study can also
be correlated with the above association model using proper
statistical means; thus increasing the probability of cancer
recognition at early stages.

While it is evident that a study of all of the variation
mentioned above is required to assess cancer development,
constructing such a model requires significant quantities of
samples, major effort in experimental work and interactive
research, and sophisticated computation utility. In addition,
using wearable sensors such as electronic noses for early de-
tection of cancer involves real-time monitoring and analytics.
These requirements can be realized using the proposed eHealth
framework.

B. The Role of EDA Tools

EDA tools are key enablers for benchtop biomolecular
analysis, such as epigenetic and proteomic studies, on pro-
grammable cyber-physical microfluidic devices. Algorithmic
innovations will fill the gap between control/monitoring in the
physical space and online biochemistry-on-chip synthesis in
the cyber space, and will coordinate the operations for multiple
sample pathways. For example, an EDA tool was developed
to enable gene-expression analysis using DMFBs [57]. The
developed tool includes: (1) a spatial-reconfiguration technique
that incorporates resource-sharing specifications into the EDA
flow; (2) an interactive firmware that collects and analyzes
sensor data based on quantitative polymerase chain reaction;
and (3) a real-time resource-allocation scheme that responds
promptly to decisions about the protocol flow received from
the firmware layer. This framework has been extended in [58]
to account for temporal conditions and to allow epigenetic
analysis.

Another EDA tool has focused on adapting the above
design techniques for scalable biomolecular analysis that is
conducted at the cell level, namely single-cell analysis [59].
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To enable practical single-cell studies, the synthesis framework
is advanced as follows: (1) it supports online decision making
in order to classify a pool of heterogeneous cells into “sub-
populations”, where each sub-population will be subjected to
a specific flow of quantitative analysis; (2) it allows cells to be
tagged (i.e., DNA-barcoded) automatically based on the cell’s
sub-population, and this barcode can be used to keep track
of the identity of the cell during biomolecular analysis. More
discussion on the EDA for biochemistry-on-chip can be found
in [130].

By adopting these tools, the proposed eHealth solution can
seamlessly coordinate the synthesis of biomolecular analysis
across several microfluidic devices, and therefore construct a
progressive disease model in a short period of time.

C. The Role of IoT-Based eHealth

The adoption of IoT-based eHealth as a solution for breast-
cancer analysis brings the following advantages.

• The dynamic environment of the eHealth system provides
unification of research goals, which enables efficient
exploitation of multi-site resources (e.g., tissue samples,
reagents, workers, and sensors). Such a coordination
allows precise modeling of cancer, for example, through
directing a research site to focus their study on specific
genome loci; enabling them to increase the number of
gene probes per locus and thereby the system precision.
In analogy with electronic systems, this is similar to
increasing the number of representation bits of an analog
signal during analog-to-digital conversion.

• The big-data infrastructure can be seamlessly exploited
for high-dimensional machine learning and data mining,
giving a significant advantage for cancer researchers. For
example, wearable sensors and sophisticated Bayesian
inference can be employed for assessing cancer risk or
for predicting patient survivorship.
While the above two advantages can also be provided
by BioCyBig [122], the proposed eHealth system can
outperform BioCyBig in the early-detection aspect. Due
to the integration of multi-omics studies with pathological
real-time monitoring, our framework can significantly
improve the disease model and even provide timely
decision support for patients in critical conditions.

Fig. 7 shows the timeline of a typical scenario for the
interactions between the eHealth system and breast-cancer
researchers, following the logical sequence in Fig. 6. Note
that a microfluidics-based facility can communicate with the
system, via a handshaking mechanism, to run a bioassay
protocol and augment the genomic model of a disease (i.e.,
“write” mode) based on a “call” from the eHealth framework.
Alternatively, a researcher can inquire about the current status
of the model (i.e., “read” mode) for diagnosis purposes. The
same hand-shaking sequence can also apply to electronic noses
to record information related to defined pathologies.
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Fig. 7: The interaction between the IoT-based eHealth system
and microfluidics-based facilities (device layer) for construct-
ing the breast-cancer model [122].

VI. CONCLUSIONS

Technology has been a key part of health care for many
years. As the Internet of Things (IoT) paradigm becomes
more widespread, a host of novel opportunities have arisen.
Technologies such as miniature wearable biosensors, along
with advances in Big Data, especially with respect to efficient
handling of large, multiscale, multimodal, distributed and het-
erogeneous data sets, have opened the floodgates for eHealth
and mHealth services that are more personalized and precise
than ever before. However, IoT hints at an even greater change
in health care paradigms; it promises greater accessibility and
availability, personalization and tailored content, and improved
returns on investments in delivery. Even so, as IoT eHealth
broadens the horizons of fulfillment in terms of existing health
care needs, quite a few major hurdles remain before consistent,
suitable, safe, flexible and power-efficient solutions can be
deployed to address many medical demands. The only way
to cross these hurdles is to facilitate collaboration between
the software and hardware communities, in order to push
technology forward. Before a truly IoT-based health care
world can emerge, significant advancements are needed in
bioelectronics, communication devices, EDA and software,
and networks. In addition, breakthroughs are also needed in
pattern recognition, sophisticated data-analytics, Big Data and
cloud computing, and information technologies.
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