
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2846662, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXXX 1

Synthesis of a Cyberphysical Hybrid Microfluidic
Platform for Single-Cell Analysis

Mohamed Ibrahim, Student Member, IEEE, Krishnendu Chakrabarty, Fellow, IEEE,
and Ulf Schlichtmann, Member, IEEE

Abstract—Single-cell genomics is used to advance our under-
standing of diseases such as cancer. Microfluidic solutions have
recently been developed to classify cell types or perform single-
cell biochemical analysis on pre-isolated types of cells. However,
new techniques are needed to efficiently classify cells and conduct
biochemical experiments on multiple cell types concurrently.
Nondeterministic cell-type identification, system integration, and
design automation are major challenges in this context. To over-
come these challenges, we present a hybrid microfluidic platform
that enables complete single-cell analysis on a heterogeneous pool
of cells. We combine this architecture with an associated design-
automation and optimization framework, referred to as Co-
Synthesis (CoSyn). The proposed framework employs real-time
resource allocation to coordinate the progression of concurrent
cell analysis. Besides this framework, a probabilistic model based
on a discrete-time Markov chain (DTMC) is also deployed
to investigate protocol settings where experimental conditions,
such as sonication time, vary probabilistically among cell types.
Simulation results show that CoSyn efficiently utilizes platform
resources and outperforms baseline techniques.

Keywords—Cyberphysical integration, design automation, graph
search, hybrid system, Markov chains, microfluidics, synthesis.

I. INTRODUCTION

Single-cell analysis using affordable microfluidic technolo-
gies has now become a reality [1], [2]. Thousands of hetero-
geneous cells can be explored in a high-throughput manner to
investigate the link between gene expression and cell types,
thereby providing insights into diseases such as cancer [3].
Microfluidic techniques have recently been developed to con-
duct each step of the following single-cell experimental flow.
(1) Cell Encapsulation and Differentiation: Heterogeneous
cells are isolated, encapsulated inside droplets, and differenti-
ated according to their identity (type); e.g., their shape, size,
cell-cycle stage, or lineage.
(2) Droplet Indexing (Barcoding): Each droplet is manipu-
lated through a sequence of biochemical procedures such as
cell lysis and mRNA analysis. At the end of these steps, the
in-situ type of the encapsulated cell may no longer be available
for down-stream analysis [4]. Therefore, indexing of droplets
using barcodes is needed to keep track of their identity [5].
(3) Type-Driven Cell Analysis: Single-cell studies are in-
creasingly being used to measure cell properties that are not
directly observable in a cell population. Single-cell bioassays
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such as chromatin immunoprecipitation (ChIP) are carried out
using microfluidics, where the selection of a bioassay relies
on the cell type that has been identified in Step 1 [1]. To
draw meaningful conclusions, the experimental outcomes are
associated with droplet barcodes injected in Step 2 [6].

To tackle the myriad complexities associated with the above
flow, microfluidics design-automation (“synthesis”) is essen-
tial. Independent multiple sample pathways need to be sup-
ported for concurrent manipulation of cells. Current synthesis
techniques are not able to cross the formidable barrier that
separates biochip design from practical single-cell studies.
The following discussion highlights the main challenges in
integrated single-cell studies:
Integration of Heterogeneous Single-Cell Methods: Not all
the above steps can be efficiently miniaturized using a single
microfluidics technology. Valve-based techniques are used to
rapidly separate and isolate biomolecules with high resolution,
making them suitable for cell encapsulation (Step 1) [1].
On the other hand, digital-microfluidic biochips (DMFBs)
enable real-time decision making for sample processing and
genomic-analysis protocols, such as quantitative polymerase
chain reaction (qPCR) [7] (Step 3). However, DMFBs are not
as effective for interfacing to the external world [8]. Hence,
there is a need for a hybrid microfluidic system that combines
the advantages of the two domains, and a synthesis method that
controls single-cell experiments in a dual-domain microfluidic
setting.
Scalable Droplet Indexing: A single-cell analysis flow may
involve hundreds of cell types, each of which requires a distinct
barcode for down-stream analysis using digital microfluidics.
Therefore, droplet indexing on a DMFB requires either the use
of pre-stored droplets that host individual barcoding hydro-
gels [6] (not feasible when a large number of cells are being
investigated) or a specific input reservoir for each cell type.
The latter solution increases the fabrication cost dramatically.
Furthermore, since reservoir control is not readily automated
[9], it is unrealistic to assume that each dispensed droplet
contains only one barcoding particle.
Dynamic synthesis: Due to the inherent uncertainty about
cell types, cyberphysical integration can play a key role in
streamlining microfluidic cell-type identification and single-
cell analysis. However, employing cyberphysical integration
for processing every cell requires a dynamic synthesis capa-
bility, which can effectively explore resource space and also
provide a prompt solution. As a result, the need for such a ca-
pability introduces a tradeoff between synthesis performance,
e.g., protocol completion time, and system responsiveness—
this tradeoff has yet to be investigated.
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Stochasticity of Protocol Conditions: Despite the efforts
made towards standardization of single-cell protocols, many
protocol steps, such as the duration of sonication in ChIP, are
deemed to be cell-type-specific. For example, CD4+ white-
blood cells require significantly longer sonication time com-
pared to other red blood cells [10]. Failing to characterize the
variation in sonication time and other parameters among cell
types may lead to degradation in down-stream immunoprecip-
itation and thus the overall ChIP performance [11]. Hence, it
is important to take into consideration such stochasticity when
defining the protocol guidelines.

In this paper, we address the above challenges by introduc-
ing the first hybrid microfluidic platform for integrated single-
cell analysis. We present a synthesis method, referred to as
Co-Synthesis (CoSyn), to control the dual-domain platform.
We also develop a probabilistic model that employs a discrete-
time Markov chain (DTMC) to capture protocol settings where
experimental parameters vary among cell types. The main
contributions of this paper are as follows:
• We present an architecture of a hybrid microfluidic

platform that integrates digital-microfluidic and flow-
based domains (using valves) for large-scale single-cell
analysis.

• We describe CoSyn, which enables coordinated control
of the microfluidic components, and allows dual-domain
synthesis for concurrent sample pathways.

• We propose two schemes for valve-based routing (graph-
theoretic and incremental methods), which enable dy-
namic routing of concurrent samples within a reconfig-
urable valve-based system.

• We construct a DTMC model, which utilizes probabilis-
tic information related to protocol steps and experiment
budget to investigate the efficiency of probabilistic pro-
tocol decisions.

• We evaluate system performance and reconfigurability
while exploring various configurations of the valve-
based system.

The rest of the paper is organized as follows. Section II
presents an overview of related prior work and probabilistic
formal methods that are relevant to this work. An overview
of the hybrid microfluidic platform and its use for single-
cell analysis are presented in Section III. Next, we formalize
the single-cell analysis flow in Section IV and describe the
proposed synthesis framework (CoSyn) in Section V. Subse-
quently, details of the valve-based synthesizer are introduced in
Section VI, and probabilistic protocol modeling is presented
in Section VII. Our experimental evaluation is presented in
Section VIII and conclusions are drawn in Section IX.

II. PRELIMINARIES

In this section, we review synthesis methods for microfluidic
biochips and relevant modeling techniques related to stochastic
processes.

A. Synthesis of Microfluidic Platforms
A DMFB manipulates picoliter droplets, and consists of

a two-dimensional array of electrodes and a set of on-chip
resources [12]. Valve-based biochips, on the other hand, rely

on special-purpose components (e.g., microvalves and micro-
pumps) to manipulate liquid flow [13].

Considerable research efforts have been devoted to the syn-
thesis of biochemical applications for a specific microfluidic
technology, e.g., either digital-microfluidic systems or valve-
based systems. Early synthesis methods for both technologies
focused on scheduling, droplet routing, chip-level routing,
and sharing of control pins (or pressure sources) [14]–[26].
However, these methods are inadequate for single-cell analysis
since they can only be applied to single biochemical assays.
Moreover, real-time coordination between different single-cell
microfluidic techniques is not possible using these methods.

Cyberphysical synthesis techniques have enabled online
error recovery [27]–[30], volume precision [31], termination
of biochemical applications such as qPCR [32], and protocols
for multiple samples [33], [34]. However, a key limitation of
the above methods is that they fail to support heterogeneous
single-cell analysis, and considerable manual effort is required
to coordinate biochemical procedures.

Recently, a flow-based design methodology has been intro-
duced to support high-throughput single-cell applications [35].
This design employs a delay model of pressure-driven transport
to satisfy a given throughput constraint, enabling single-cell
applications to be efficiently executed. This work, however,
considers only the early stages of single-cell analysis, namely
cell isolation and barcoding, and it does not consider the
complete analysis flow.

Therefore, to close the gap between microfluidics and single-
cell genomics, there is a need for a synthesis framework that
can coordinate single-cell analysis techniques.
B. Discrete-Time Markov Chains and Stochastic Systems

DTMCs constitute a formal method to model stochastic
systems, such as in biology [36], that exhibit a discrete
state space [37]. DTMCs are similar to finite-state machines,
but enriched with probabilistic transitions to model random
phenomena. A transition from state si to state sj is associated
with a one-step transition probability that must depend only
on the two states and not on the previous transitions—this
property is referred to as Markov property.

Formally, a DTMC D is specified as a tuple D =
〈S, sinit,U ,J 〉, where: (i) S is a finite set of states (state
space) and sinit ∈ S is the initial state; (ii) U : S ×S → [0, 1]
is a transition probability matrix such that

∑
s′∈S U(s, s′) =

1 ∀s ∈ S; (iii) J : S → 2AP is a labeling function that assigns
each state to a set of atomic propositions from a denumerable
proposition set AP [37]. These labels can be utilized by a
probabilistic model-checking tool to express DTMC model
properties with the help of temporal logic.

Properties of a DTMC model can be described using Proba-
bilistic Computation Tree Logic (PCTL) [38]. PCTL formulae
are interpreted over the DTMC states. For instance, consider
a predicate φ that is always satisfied in state s (i.e., s |= φ),
we can use the following PCTL formulae to describe path or
numerical queries:

1) Q1 := P≥0.95[♦φ], which inquires if the modeled
system can eventually reach a state that satisfies φ with
a probability that is greater than or equal to 0.95. The
operator ♦ means “eventually”.
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Fig. 1: Schematic of the hybrid platform for single-cell anal-
ysis: (a) a flow-based biochip used for cell encapsulation and
droplet generation; (b) a DMFB used for quantitative analysis;
(c) a reconfigurable valve-based fabric used for barcoding.

2) Q2 := Pmax=?[♦<10φ], which seeks the maximum
probability that the system will eventually reach a state
s satisfying φ in less than 10 steps.

The query Q1 is considered to be a reachability query,
whereas Q2 is a numerical query. These queries and others can
be used to investigate the evolution of a stochastic system that
is modeled using DTMC. More details about DTMC model
checking and PCTL syntax can be found in [38].

III. HYBRID PLATFORM AND SINGLE-CELL ANALYSIS

Single-cell analysis relies on the concurrent manipulation
of sample droplets, where each sample cell is run through
the protocol flow discussed in Section I. An efficient on-
chip implementation of the single-cell analysis protocol is
accomplished using a hybrid platform. Fig. 1 shows the
platform components matched with different protocol stages.
The two domains are connected through a capillary interface;
this technique has been successfully adopted in practice [9].

A. Cell Encapsulation and Flow Control
As shown in Fig. 1, on-chip operation starts with the

encapsulation of single cells in droplets, which is efficiently
accomplished using flow-based microfluidics [9]. A flow-
based system can be configured to function as a droplet-in-
channel device, allowing a two-phase flow to be generated.
More specifically, encapsulation of individual cells is easily
accomplished by considering three intersecting flows; an aque-
ous flow (containing cells) and two oil flows. These flows
are pressure-driven by syringe pumps and therefore they can
be carefully balanced, allowing aqueous droplets (containing
single cells) to be automatically formed with a surrounding
oil phase. Next, the resulting two-phase flow is transported to
the digital microfluidic device through a capillary interface.
Fig. 2 shows cell encapsulation and droplet generation using
a two-phase flow.

On the other hand, the digital microfluidic device consists
of two parallel plates. The gap that separates the two plates

Syringe pumps

Cells with media
Capillary interface

Oil

Outlet to digital 

microfluidic deviceTwo-phase flow 

formation

Two-phase flow

Fig. 2: A flow-based device used to generate aqueous droplets
containing single cells as part of a two-phase flow [9].

is flooded with oil, which acts as a filler medium. According
to [9], the rate of oil injection between the two plates can
be controlled using a feedback system in order to prevent the
evaporation of droplets that are collected from the flow-based
side. The oil medium also facilitates the injection of the two-
phase flow into the digital side through the capillary interface.

To efficiently integrate both sides, the droplet generator
uses the syringe pumps such that the flow rate of pressure-
driven droplets can be automatically controlled via feedback.
A capacitive sensor is placed at the interfacing electrode (ec
in Fig. 1) on the digital side to sense a droplet [39]. When the
digital array is unable to accommodate additional droplets, it
stops the flow by switching off the pump.

Note that an actuator is used in the flow-based component,
whereas a sensor is placed on the digital side. To synchronize
the two domains, the flow-control procedure (capacitive sens-
ing and pump control) is invoked at the same frequency as
droplet actuation in the digital domain (1 Hz to 10 Hz).

B. Cell Differentiation
Automated cell-type identification can be achieved by ana-

lyzing signaling events in single cells in situ. Similar to the
miniaturization of gene-expression analysis [40], a green fluo-
rescent protein (GFP) reporter is used for cell differentiation.
In each cell, the fluorescence intensity from the GFP (detected
in real-time using an on-chip fluorescence detector or imaging
apparatus) is used to account for differences in expression
level among cells; this is equivalent to classifying cells into
functional clusters that represent cell types.

Although a valve-based biochip can also be used for cell
differentiation, we consider a DMFB for this purpose due to its
demonstrated ability to carry out high-throughput fluorescence
detection and distinguish between hundreds of cell types; this
feature is not supported by valve-based mechanisms.

C. Droplet Barcoding
Since thousands of cells (and hundreds of cell types) can

be involved in an analysis protocol, a barcoding droplet must
be dispensed on demand, and mixed with a sample droplet
and other reagents according to the cell type [6]. If we
consider a population with n cell types, droplet barcoding on a
digital-microfluidic array requires n reservoirs, each of which
typically covers a 3-electrode space. An additional electrode
is needed for separation; see Fig. 3(a). In this case, to accom-
modate n reservoirs, a lower bound on the array perimeter
is 4n + k electrodes, where k is a constant that represents
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Fig. 3: Droplet barcoding using: (a) a DMFB; (b) a valve-based
biochip with one-to-one mapping between pumps and DMFB
ports; (c) a valve-based biochip with many-to-many mapping.

the number of electrodes covered by other reservoirs. This
approach is therefore impractical because of the significant
increase in chip size with the number of target cell types.
It also requires the dispensing of a single hydrogel particle
per droplet; this feature has not been implemented yet using
reservoir control.

To overcome the above limitations, a valve-based biochip
is connected to the DMFB to exploit its pressure-driven ports
that have smaller footprints than reservoirs; see Fig. 3(b).

This biochip is used to generate barcoding droplets via a sy-
ringe pump; the droplets are routed to appropriate locations on
the digital-microfluidic array through a capillary interface [6].
With this hybrid configuration, the lower bound on the digital-
array perimeter is reduced to 2n+k electrodes for n cell types.
A one-electrode gap is needed to prevent accidental mixing of
droplets. This hybrid configuration, however, overprovisions
the number of concurrently utilized ports; it is unlikely that
all cell types will simultaneously request barcoding.

As a cost-effective solution, we utilize a reconfigurable
valve-based fabric that has n input ports and m output
ports [41]; see Fig. 3(c). This routing fabric acts as a crossbar
since it allows routing of barcoding droplets from any of the n
input ports to any of the m output ports, where n>>m. The
full connectivity offered by this crossbar allows droplets to be
easily re-routed and therefore it intrinsically supports fault tol-
erance. The m-output valve-based fabric is then stitched to the
DMFB; hence the lower bound on the perimeter is decreased to
2m+k. By unlocking this capability of valve-based crossbars,
we shift the scaling complexity from the digital domain to the
flow-based domain, which is known to have a cost-effective
fabrication process and efficient peripheral components.

In addition to the above advantages, the use of a recon-
figurable valve-based fabric is important since it allows us to
employ a design methodology that investigates the tradeoff
between biochip cost and single-cell throughput and therefore
provides more choices for biochip designers. For example, a
biochip designer may prefer to utilize a cost-effective design,
in which fewer electrodes are used at the digital side. To
achieve this goal, i.e., to optimize for cost, sharing of flow
channels among several barcoding inputs gains significant
importance in order to minimize the number of peripherals to
the DMFB. In other words, the role of the reconfigurable valve-
based fabric becomes more significant. On the other hand, if
a designer opts for a high-throughput platform, in which a
large DMFB size is utilized, then sharing of flow channels

(a)                                                                 (b)

(c)                                                              (d)
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Fig. 4: A valve-based routing fabric for droplet barcoding: (a)
a 2-input full transposer; (b) a 2-input half transposer; (c) a
4-level, 8-to-2 routing fabric; (d) a 6-level, 8-to-2 fabric.

TABLE I: Design problems for assembling and integrating an
n-to-m valve-based crossbar.

Problem Objective
Architecture Analyze the tradeoff between routing flexibility

and operation timing and cost to obtain the best
transposer configuration.

Modeling Map the architecture into algorithmic semantics
that support real-time routing.

Synthesis Solve the valve-based routing problem considering
real-time reconfiguration and in coordination
with resource allocation in DMFBs.

among barcoding particles can be reduced, and therefore the
role of the reconfigurable valve-based system becomes less
significant. This observation has been studied and the results
are reported in Section VIII-C.

We utilize the “transposer” primitive introduced in [41].
As shown in Fig. 4(a)-(b), a valve-based transposer appears
in two forms: (1) a two-input, two-output transposer, which
is comprised of six valves, controlled via two pneumatic
inputs (full transposer); (2) a two-input, one-output transposer,
which consists of two valves controlled via two pneumatic
inputs (half transposer). Note that only a full transposer allows
simultaneous dispensing of two barcoding droplets, wherein
the droplets can be driven “straight” or “crossed”.

The use of transposers to construct an n-to-m valve-based
crossbar leads to various design problems that must be tackled;
see Table I. An architectural design challenge arises because
various configurations of transposers can be exploited to
achieve the required number of input and output ports. For
example, an 8-to-2 crossbar can be constructed using four
“vertical” levels, as shown in Fig. 4(c), or using six levels,
as shown in Fig. 4(d). A six-level crossbar, while incurring
higher cost, provides a higher degree of reconfigurability and
flexibility in routing. In Section VI-D, we study valve-based
routing using various configurations of the crossbar.

D. Type-Driven Single-Cell Protocol
After a droplet is barcoded, a single-cell analysis protocol

is applied to the constituent cell in the DMFB, where protocol
specifications are determined based on the cell type. For
example, an investigator might be interested in identifying
the gene expression of a specific genomic loci for a certain



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2846662, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, XXXX 5

cell type A. Another cell type B might show unexpected
heterochromatic state at a certain loci, and the investigator
might be interested in identifying the protein interactions (i.e.,
causative proteins) or chromatin modifications causing this
behavior. For type A, it is sufficient to perform gene-expression
analysis using qPCR [7], [40], whereas ChIP protocol followed
by qPCR must be used for type B to reveal the DNA strains
contributing in the activity of the causative proteins.

Ultimately, by supporting type-driven analysis, biologists
can launch multiple single-cell applications, aiming for draw-
ing a holistic picture of the interactions between different
biomolecules (e.g., DNA, mRNA, protein, etc.). Note that our
proposed framework can support the execution of multiple
applications, a single application for all cell types, or even
multiple applications for a stream of cells that are of the same
type (cell barcoding can be used to distinguish these cells at
the end of down-stream analysis).
E. Platform Throughput and Scalability

By combining the two microfluidic formats (flow-based
and digital microfluidics), we can maintain scalable single-
cell analysis. As described earlier, flow-based microfluidics is
efficient in generating thousands of droplets that encapsulate
individual cells using a two-phase format. However, on the
negative side, flow-based microfluidics relies on an etched
micro-structure that, despite its capability in droplet prepa-
ration, fails to support reconfigurable analysis at the down-
stream part. To overcome this drawback, digital microfluidics
comes into play–digital microfluidics is well-suited for adding
reagents in parallel, and reagents can be mixed on demand
without the requirement of optimal and precise flow rates.

A DMFB is scalable in terms of handling multiple cells
concurrently. In [7], a 230-electrode chip can be used to
process 20 cells concurrently. By using our design-automation
technique, the number of cells can be drastically increased
since we allow resource sharing among pathways. However,
note that a DMFB still provides a lower throughput compared
to the flow-based devices; this observation does not mean that
digital microfluidics cannot process droplets quickly, but it
means that a DMFB is burdened with the largest portion of
work for single-cell analysis. Further increase in the chip size
can also increase the number of cells manipulated concurrently,
thus leading to a higher throughput. Nevertheless, it needs
to be clear that our objective is not to achieve the optimal
throughput; our objective is to provide a cost-effective design
methodology that employs the hybrid platform to process a
continuous stream of cells with a reasonable throughput.

Based on the above discussion, flow-based microfluidics
offers temporal scalability (high-throughput), whereas digital
microfluidics offers reconfigurability and spatial scalability
(concurrent single-cell analysis). Combining both technologies
with an adequate feedback system (to synchronize throughput
rates at both domains) provides spatio-temporal scalability for
complete single-cell analysis.

IV. MAPPING TO ALGORITHMIC MODELS

A. Modeling of a Valve-Based Crossbar
We represent the set of transposers and their interconnec-

tions as a directed acyclic graph (DAG) T = (X ,Z), where

(a)                                                   (b)

(c)

i1
i2
i3
i4

ܿଵ

i1i2i3i4

ܿଶ

q = 5
Vertical level

Fig. 5: Mapping a valve-based crossbar to a graph model: (a)
a full transposer; (b) a half transposer; (c) a 4-to-2 crossbar.

a vertex xi ∈ X is a transposer node, and an edge zi ∈ Z
represents a connection between two transposers. Within a
transposer, the point at which a droplet can be routed either
straight or crossed is defined as a decision point. We map an n-
to-m valve-based crossbar (with a transposer network T ) into
a DAG Fn×m = (Dn×m,Sn×m), where a vertex di ∈ Dn×m
is a flow-decision node, and an edge si ∈ Sn×m represents
a channel that connects two decision nodes. To simplify the
discussion, we do not include T in the notation for the crossbar
DAG. We can view a full (half) transposer as a 2-to-2 (2-to-1)
valve-based crossbar; thus, we represent fluid-flow control in
a full (half) transposer as a DAG F2×2 (F2×1); see Fig. 5(a)-
(b). The cost ci of si represents the time needed to transport
fluid between the two connected nodes, measured in flow time
steps (Tf ). We assume that the routing time of a droplet on a
straight channel between two decision nodes is a unit of Tf .
For example, as shown in Fig. 5(a), c1 is equal to Tf , whereas
c2 is equal to 2 Tf , since even though a diagonal is shown in
Fig. 4 as a fluidic path, routing of such paths in a transposer
is implemented only along the x- and y-directions and the
distances along these dimensions are equal [41]. Fig. 5(c)
depicts the graph F4×2 for a 4-to-2 crossbar with 4 levels
of transposers and 5 levels of nodes (denoted henceforth by q;
q = 5 in this case).
B. Modeling of a Digital-Microfluidic Biochip

While DMFBs are highly reconfigurable and can support a
diverse set of transport paths, we reduce the burden of man-
aging droplet transport in real-time by considering a unidirec-
tional ring-based architecture, as shown in Fig. 1. Connected
to this ring are on-chip resources. Since there is always a route
between any pair of on-chip resources, a ring-based DMFB is
modeled as a strongly connected DAG G = (V, E), where a
vertex vi ∈ V represents the fluid-handling operation offered
by an on-chip resource, and a directed edge ei ∈ E represents
a path (over the ring) that connects two resources. The cost
cei of ei indicates the number of digital time steps (Td)
needed to transport a droplet. We assume that the durations
corresponding to Tf and Td are equal, which can be achieved
in practice by tuning the actuation frequency (Hz) and the flow
rate (mL/min).
C. Protocol Model and Cell State Machine

To solve the synthesis problem for single-cell analysis,
we take into account the complexity imposed by the bar-
coding mechanism. Similar to the design methodology in [40],
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Fig. 6: CFG of type-driven analysis for a single cell pathway.

we represent the protocol as a control flow graph (CFG)
A = (H,L), in which every node hi ∈ H (referred to as
a supernode) models a bioassay such as qPCR; see Fig. 6.
A directed edge li ∈ L linking two supernodes {hj , hk}
indicates that a potential decision can be made at runtime to
direct the protocol flow to execute the bioassay hk after hj .
A supernode hi, in turn, encapsulates the sequencing graph
that describes the fluid-handling operations of a bioassay and
the interdependencies among them. Since there is inherent
uncertainty about the type of barcoding droplets for a sam-
ple cell at design time, we extend the basic CFG model
by incorporating an internal supernode (barcode propagation)
that describes all possible dispensing options of barcoding
droplets. Note that this model is agnostic about the type of the
microfluidic technology used for implementing the protocol.
Yet, the synthesis of each supernode is accomplished in a
technology-aware manner using CoSyn.

The model shown in Fig. 6 represents a protocol where a
dispensed cell can be processed using one of two biochemical
procedures, namely gene-expression analysis (GEA) and ChIP
procedures. As shown in the CFG model, the execution of
the protocol starts with dispensing an aqueous sample droplet
(Sample Dispense supernode). The type of the sample is then
identified and mixed with an associated barcoding droplet
that is routed through the reconfigurable valve-based fabric
(Identification and Labeling supernode). Next, according to the
cell type, either GEA or ChIP procedures will be executed. If
GEA is selected, then fluid-handling operations of cell-lysis,
mRNA preparation, control preparation, and qPCR will be
carried out. At the end of each bioassay, a detection operation
is performed to ensure that the efficiency of the resulting
solution is above a certain threshold [33]. Similarly, if ChIP is
selected, then fluid-handling operations of post-fixation, cell-
lysis, chromatin shearing, immuno-precipitation, DNA wash-
ing, control preparation, and qPCR will be performed.

In addition to the CFG model, a state machine is utilized
to model the progression of each cell along the single-cell
pipeline. Typically, the hybrid platform can iteratively process
thousands of cells; such cells might be scattered across the
platform domains at any given point in time. Therefore, this
state machine (Fig. 6) is necessary to keep track of the cells
that are being processed simultaneously.

TABLE II: Notation used in the algorithms.

Ci Cell metadata G DMFB graph model
Rd Set of DMFB resources Y Set of fluidic-operation types
R̃ Set of unoccupied DMFB resources (R̃ ⊂ Rd)
s Minimum value of the cost function associated with R̃

Fn×m Graph model of an n-to-m crossbar
P Set of vertices in Fn×m representing a routing path
U Set of unoccupied vertices in Fn×m

θ Boolean variable: True if a path P is complete

V. CO-SYNTHESIS METHODOLOGY

In this section, we describe the synthesis problem and
present an overview of the proposed co-synthesis methodology.
A. Problem Formulation

Our optimization problem is as follows:
Inputs: (i) The protocol CFG A. (ii) A matrix C; each vector
Ci ∈ C corresponds to a cell, and consists of integers that
encode cell state machine, cell type, and the assigned bioassays
in A. (iii) The configuration of the valve-based system; this
information includes the graph Fn×m, the number of inputs
n, and the number of outputs m. (iv) The types of resources
corresponding to the DMFB, their operation time, and the
routing distance between each pair of resources.
Output: Allocation of chip modules by the individual cells,
protocol completion time Tcomp.
Objective: Minimize Tcomp to provide high throughput and
minimize Tresp to improve system responsiveness.

The notation used in this paper is summarized in Table II.

B. Proposed Solution
The proposed co-synthesis scheme, depicted in Fig. 7,

consists of four components: (1) valve-based synthesizer,
which is used to route barcoding droplets through the valve-
based crossbar; (2) DMFB synthesizer, which is utilized for
allocating DMFB resources, e.g., mixers and heaters, to sam-
ple pathways; (3) biology-sample model, which records the
progress of a sample (cell) within the protocol CFG and also
provides updated resource preferences; (4) time-wheel engine,
which seamlessly coordinates real-time interactions between
the individual sample models and the synthesizers of the
hybrid system. Note that the stages of the single-cell pipeline,
simulated by this scheme, match the states of the cell state
machine (Fig. 6).

The time-wheel interacts with other components through
APIs. For example, whenever the time-wheel locates an avail-
able fluorescence detector at the DMFB, a new sample model
is initialized (Fig. 7) and the associated cell is allocated to the
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Fig. 7: Overview of the proposed co-synthesis methodology.
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Algorithm 1 DMFB Resource Allocation
Input: Ci, G, current simulation time “t”
Output: Assigned Resource “r”

1: R̃← GetCurrentlyUnoccupiedResources(G, t);
2: if (R̃ is empty) then return NULL;
3: y ← GetOperationType(Ci);
4: s← CalculateMinimumCostAllAvailableResources(y, R̃);
5: if (s =∞) then return NULL; // No suitable resource
6: r ← GetSelectedResource(s); return r;

detector in order to perform type identification. Next, when
the cell type is identified and there are available valve-based
routes to route the associated barcoding droplet, the time-
wheel triggers the valve-based synthesizer to start the pipelined
routing process of the barcoding droplet; valve-based routing
is performed through iterations until the droplet reaches the
electrode interface at the digital-microfluidic side and is mixed
with the cell. We discuss two methods for valve-based routing
in Section VI.

When a DMFB resource is available to further process the
cell, the previously reserved valve-based channels are released
by the time-wheel. Hence, real-time resource allocation for
the DMFB is also initiated by the time-wheel, which in turn,
commits a cell pathway whenever its particular single-cell
bioassays have executed. Based on an intermediate decisions
whose outcome is communicated to the sample model, the cell
might also be discarded during analysis.
C. DMFB Synthesizer

We use a greedy method to solve the resource-allocation
problem in the DMFB; the pseduocode is shown in Algo-
rithm 1. We denote a DMFB resource by r ∈ Rd, where Rd
encapsulates all DMFB resources. Thus, the cost of allocating
resource r to execute a fluidic operation of type y ∈ Y
(the set Y incorporates all operation types) is ρ(r̂, r, y) =
γ(r, y) + E(r̂, r), where γ(r, y) is the operation time on r and
E(r̂, r) is the routing distance from r̂ (the currently occupied
resource) to r. The worst-case computational complexity of
this algorithm is O(|V|).

VI. VALVE-BASED SYNTHESIZER

Our goal is to design a fully connected fabric such that a
droplet can be forwarded from any of the n inputs to any of the
m output ports. We present a sufficient criterion for achieving
a fully connected fabric. The proof can be found in [42].

Theorem 1. An n-to-m, q-level valve-based crossbar is a fully
connected fabric if n and m are even integers, and q ≥ m+n

2 .

Using this theorem, we can automatically generate the
graph model Fn×m, thereby guaranteeing that any barcoding
input can reach all m outputs. The algorithm is described
in [42]. Using this model, a systematic methodology for droplet
routing can be developed. In Section VI-A, we introduce the
formulation of the routing problem and the solution approach.
A. Problem Formulation and Solution Approach

Valve-based routing is described as follows:
Inputs: (i) The fabric model Fn×m, the number of inputs n,
and the number of outputs m. (ii) The matrix C that encodes
the cell state machine; each vector Ci ∈ C corresponds to a
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Complete path

Fig. 8: Valve-based routing of 4 barcoding droplets (4-to-2
biochip): (a) with pipelining; (b) without pipelining.

cell (Section V).
Constraints: (i) A droplet must be routed through a path
from its specified input port to any output port. (ii) A droplet
requires at least one time step to be transported from an
intermediate vertex to another directly connected vertex (i.e.,
no jumps allowed). (iii) At any time t, the routing paths of
different droplets cannot overlap.
Output: Allocation of the graph vertices to barcoding droplets
at all time steps.

An n-to-m valve-based crossbar allows only m barcoding
droplets to be delivered simultaneously to the DMFB. We
increase throughput by allowing pipelined routing of droplets.
With pipelining, the routing algorithm allows a droplet to be
routed even though a complete path to an output is unavailable.
In this case, a droplet is immobilized at the furthest interme-
diate decision point that is not reserved by other droplets (a
pipeline stage), then allowed to move forward when a path is
freed. Fig. 8 illustrates pipelined and non-pipelined routing.

In the following subsections, we introduce two schemes for
solving the routing problem. The first scheme in Section VI-B
uses graph search to efficiently route barcoding droplets,
whereas the second scheme in Section VI-C aims to improve
system responsiveness (i.e., reduce computation time) via an
incremental routing procedure.

B. Method 1: Graph-Theoretic Routing

We utilize a graph-theoretic algorithm to find vertex-disjoint
shortest paths [43]; see Algorithm 2. By computing disjoint
paths, we ensure that different barcoding droplets do not
interfere with each other during routing. The routing algorithm
is invoked whenever a cell transitions from the identification
state to the barcoding state. If all the m outputs of the chip are
currently reserved, the algorithm generates a partially disjoint
shortest-length path from the input source to the furthest
node (Fig. 8). This is equivalent to routing the associated
barcoding droplet up to an intermediate point, and holding the
droplet until another disjoint path (partial or complete) can
be computed to advance the droplet. The channels currently
reserved for routing a barcoding droplet cannot be accessed
by any other droplet until the droplet being held moves out of
the valve-based crossbar.

Since the vertices of Fn×m are generated in topological
order, the computation of shortest paths can be simplified;
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Algorithm 2 Pipelined Valve-Based Routing
Input: Ci, Fn×m, current simulation time “t”
Output: Generated routing path “P ”, is P complete “θ”

1: U ← GetCurrentlyUnoccupiedSubGraph(Fn×m, t);
2: d← GetVertexCurrentlyHoldingBarcode(Ci, Fn×m);
3: P ← GenerateVertexDisjointShortestPath(d, U);
4: if (P is empty) then return {NULL, false};
5: else if (P is complete) then return {P , true};
6: else return {P , false};
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Fig. 9: Incremental routing of 4 droplets (4-to-2 biochip).
the worst-case complexity of this algorithm is O(|Dn×m| +
|Sn×m|).
C. Method 2: Incremental Routing

Method 1 is computationally expensive, despite the use of
topological ordering, because it performs exhaustive search
to find a vertex-disjoint shortest-length path whenever a bar-
coding droplet is allowed to move forward. Therefore, to
reduce the computation time, we need to limit the size of
the search space so that the routing of a droplet can be
determined quickly. For this purpose, we replace the graph-
theoretic method (Line 3 in Algorithm 2) with an incremental
routing procedure, which computes the route of a droplet only
for the next time step. Hence, by using this approach, the
search space for routing a droplet is limited to three choices
only: move straight, move crossed, or stay immobilized. The
reduction in the search space can potentially reduce the overall
computation time, although this procedure will be executed
more often compared to the graph-theoretic method.

To facilitate the making of a routing decision, the valve-
based synthesizer adopts the following priority scheme: (1) a
barcoding droplet must stay immobilized if both the straight
and crossed channels are occupied; (2) a droplet must move
straight (crossed) if only the straight (crossed) channel is
unoccupied; (3) a droplet must move straight if both the
straight and crossed channels are unoccupied. Fig. 9 illustrates
incremental routing using a 4-to-2 crossbar. The computational
complexity of this procedure is O(1).
D. Droplet Routing Using Variants of Crossbar Architecture

Our discussion so far has focused on valve-based rout-
ing using a fully connected crossbar Fn×m, which exhibits

the highest degree of routing flexibility and fault tolerance.
According to Theorem 1, this design requires at least n+m

2
vertical levels. A drawback of using this number of vertical
levels is that it increases the number of time steps needed
to transport a barcoding droplet from an inlet to the DMFB
side, which in turn may increase the total completion time.
Therefore, we need to investigate the tradeoff between routing
flexibility (or fault tolerance) and system performance.

To perform this study, we explore various configurations
of an n-to-m crossbar; these configurations differ in the
number of vertical levels and therefore channel connectivity.
For example, a 16-to-8 crossbar can be constructed using one
of five different configurations, three of which are shown in
Fig. 10. It is obvious that the configuration in Fig. 10(a)
provides the highest connectivity, but it uses the largest number
of vertical levels (12 levels). In contrast, the configuration in
Fig. 10(c) offers the lowest connectivity, but it utilizes the
smallest number of vertical levels (3 levels).

We observe that a crossbar configuration can be constructed
hierarchically using a set of fully connected crossbars. For
instance, a 16-to-8 configuration can be constructed using a
single 8-to-4 crossbar F8×4 and two 4-to-2 crossbars F4×2
(Fig. 10(c)), or it can be designed using a single 16-to-8 fully
connected crossbar F16×8 (Fig. 10(a)). Clearly, the hierarchical
design approach not only facilitates the control of the crossbar
connectivity, but it also allows us to reuse the definitions and
routing methods proposed earlier for fully connected fabrics.
In other words, we can automatically generate the graph
models of such crossbar variants using the algorithm described
in [42]; only a minor modification is required to systematically
combine the graph models associated with the constituting
fully connected crossbars into a unified model.

A formal discussion of a crossbar configuration can be
established by partitioning the crossbar outputs into clusters.
The output ports within a single cluster are accessible to the
same set of input ports, i.e., a cluster forms a fully connected
crossbar. On the other hand, the output ports that belong to
two different clusters cannot be accessed from the same input.
By using this characterization mechanism, we can define a
crossbar configuration based on the number of output clusters
cl. For example, the configuration in Fig. 10(a) has a single
cluster (cl = 1), the configuration in Fig. 10(b) has two
clusters (cl = 2), and the configuration in Fig. 10(c) has four
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Fig. 10: Architectural variants of a 16-to-8 crossbar: (a) F1
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16×8.
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clusters (cl = 4). Hence, we denote a crossbar configuration by
Fcln×m, where n and m are the number of inputs and outputs,
respectively. Also, note that we can use F1

n×m and Fn×m
interchangeably since F1

n×m is the only crossbar variant that
is fully connected.

The proposed crossbar configurations can be employed to
route droplets using our methods from the previous subsec-
tions. Our algorithms will automatically comply with the clus-
tering constraints imposed by the new crossbar connectivity,
since these constraints are captured by the graph model. In
Section VIII, we study the impact of crossbar configurations
on single-cell performance via simulations.

VII. PROTOCOL MODELING USING MARKOV CHAINS

In this section, we present a probabilistic scheme to address
the stochasticity of protocol conditions. The outcome of this
step is used as an input to CoSyn.
A. Probabilistic Modeling Approach

While the graph model described in Section IV can ef-
fectively support type-driven single-cell execution, it suffers
from the following drawbacks: (1) it assumes that the protocol
conditions (e.g., fixation time and incubation temperature) are
insensitive to cell types and consequently they do not have an
impact on the protocol efficiency; (2) it also assumes that the
optimal settings of these conditions can be uniquely defined.
These assumptions however may not be valid in many real-
life scenarios, particularly due to the inherent stochasticity in
cellular interactions.

To analyze the stochastic behavior of single-cell protocols,
we collected experimental data for a population of yeast cells
after conducting several benchtop implementations of the ChIP
protocol. The collected data (Table III) shows the normalized
immunoprecipitation (IP) value, i.e., protocol efficiency1, while
varying some experimental conditions such as the number of
washing steps after IP; this table is referred to as protocol-
condition space. By analyzing the obtained data, we observe
that changing the protocol settings leads to different IP out-
comes; the settings shown in Case #6 provide the highest
efficiency. In addition, despite the use of biological replicates
in each case, the results obtained by these replicates are
not identical and they follow a normal distribution N (µ, σ2).
Hence, according to this analysis, it is necessary to redesign
the protocol model to address the above challenges.

An effective solution to this problem is based on a proba-
bilistic approach. The steps of this approach are given below:
(1) For each cell type, we collect data from previous exper-
iments and construct the associated protocol-condition space,
similar to the example in Table III.
(2) We specify an arbitrary lower-bound threshold Γ for the
protocol efficiency. For example, we choose Γ = 16.5 for
the example in Table III. Based on this threshold, we classify
cell population (replicates) into two sets: a set of cells that
contributes to high efficiency, denoted by (HE), and another
set of cells that contributes to low efficiency, denoted by (LE).
(3) Let A be an event that an arbitrary input cell belongs

1The higher the IP value, the more “enriched” the DNA is in the specific
chromatin mark; i.e., leading to higher efficiency.

TABLE III: Experimental data describing protocol-condition
space for ChIP using yeast cells.

Case # Replicates Fixation Incubation # Washes IP
number time (min) Temp. (◦C) (µ, σ)

1 32 10 25 4 (16.4,3.4)
2 6 10 18 4 (18.2,5.1)
3 5 10 32 4 (15.8,3.7)
4 4 8 25 4 (13.2,2.9)
5 2 8 18 4 (16.9,6.8)
6 3 10 32 4 (22.1,5.6)
7 4 15 25 4 (18.7,4.3)
8 3 15 18 4 (19.1,3.6)
9 3 15 32 4 (16.8,6.2)
10 5 10 25 8 (16.7,4.1)
11 3 5 25 4 (12.2,3.1)
12 3 30 25 4 (15.4,4.7)

to HE . We compute the probability that the input cell con-
tributes to high efficiency, i.e., belongs to HE , as follows:
P (A) = |HE|

|HE|+|LE| . Based on Table III, P (A) = 26
73 = 0.36.

(4) Consider a certain protocol condition such as the fixation
time. We extract all possible settings Si of this condition from
the table. According to Table III (fixation time), S1: 5-min,
S2: 8-min, S3: 10-min, S4:15-min, and S5: 30-min.
(5) Let Bi be an event that an arbitrary cell is processed
using the setting Si. We compute the probability that an
arbitrary cell will be processed using the setting Si as follows:
P (Bi) = |Si|∑

i |Si| , where |Si| represents the number of repli-
cates processed using Si. By considering (S3: 10-min) from
Table III, we obtain P (B3) = 51

73 = 0.7.
(6) We next compute the conditional probability P (Bi|A) =
P (Bi∩A)
P (A) , which represents the probability that an arbitrary cell

will be processed using Si given that this cell belongs to HE .
The probability P (Bi ∩ A) represents the percentage of cell
population that satisfy the following conditions: i the cells are
processed using the setting Si; ii the cell belong to HE . In
the example shown in Table III, P (B3 ∩ A) = 14

73 = 0.2, and
therefore P (B3|A) = 0.53.
(7) We apply Bayesian inference to estimate the posterior
probability P (A|Bi), which indicates the probability that an
arbitrary cell contributes to high performance given that this
cell is processed using the setting Si—Bayes’ theorem math-
ematically states that P (A|Bi) = P (Bi|A)·P (A)

P (Bi)
. According to

the example in Table III, P (A|B3) = 0.53×0.36
0.7 = 0.27. We

can also compute P (A|B1), P (A|B3), and the other posterior
probabilities similarly.
(8) We normalize P (A|Bi) using the following relation:
P̂ (A|Bi) = P (A|Bi)∑

i(A|Bi)
.

By adopting the above systematic approach, we are able to
capture the inherent stochasticity in the protocol environment.
This approach therefore allows us to redefine the protocol
interactions via a Markov-chain model.

B. Modeling Using Discrete-Time Markov Chains
Consider a given sequence of cells, where each cell belongs

to one of τ cell types. We consider that cell-type selection
follows a uniform distribution P (X); X is a random variable
associated with the percentage of the cell-population count
for each type. Based on the probabilistic approach discussed
earlier, each cell type is associated with specific experimental
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Fig. 11: A DTMC model for a single-cell protocol that considers three cell types.

steps for single-cell analysis and unique probabilistic distri-
butions for selecting protocol settings in each step. We also
take into account cost limitations of the overall experimental
environment such as the maximum quantities of master mixes
and washing liquids. Such cost limitations (also known as
experiment budget) play a key role in tuning the overall
performance of the protocol.

Based on the above characteristics, our objective is defined
as follows: Given a certain experiment budget, find the pro-
tocol strategy for a given sequence of cells that maximizes
the probability that the cells contribute to high efficiency.
To achieve this goal, we model the execution of single-
cell analysis as a DTMC and solve the strategy synthesis
problem via probabilistic model checking. Strategy synthesis
is a problem that is concerned with finding a strategy, in our
case a sequence of protocol steps, which satisfies a property
or optimizes a long-term objective such as the probability
of protocol success [44]. Strategy synthesis has widely been
used in many applications including planning of robots motion
under uncertainty, security analysis via synthesis of malicious
strategies, and dynamic power management using optimal
control strategies.

The outcome of strategy synthesis can then be fed into

CoSyn for resource allocation. In the future, we plan to inte-
grate both strategy synthesis and resource allocation (CoSyn)
into a single unified framework.

Fig. 11 shows a DTMC model for single-cell analysis for
τ = 3. The model constitutes a finite set of states S, which
represents a sequence of biochemical operations (e.g., mRNA
Prep) or analysis procedures (e.g., Estimate cost). In addition
to the set S, we define a transition probability matrix U :
S×S → [0, 1] that represents decisions related to the protocol
conditions and the associated probabilities; these probabilities
are highlighted in red in Fig. 11. Recall that we compute these
probabilities using Bayesian inference as discussed earlier.

To model the experiment budget constraints (and other
constraints), we augment the state transitions of the proposed
DTMC model with a set of guards, which ensure the fulfill-
ment of these constraints and therefore transition the system
towards success (Within budget) or failure (Over budget). For
example, in Fig. 11, the transition from state “Success” to state
“Dispense cell” is possible only if the number of processed
cells is still below the total population count Ctot. Clearly,
these guards, which are tuned based on the experiment budget,
play a key role in computing the optimal protocol strategy. In
Section VIII-E, we examine the budget’s role in controlling
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the protocol efficiency using PCTL.
Note that the above discussion considers a static DTMC

model, which is computed only once based on the protocol-
condition space. However, since stochasticity is ubiquitous in
single-cell applications, protocol conditions can significantly
change over time, and therefore there is a need to update the
transition probabilities in the DTMC model. To cope with this
dynamic behavior, a closed-loop system can be constructed
where multiple iterations can be performed. In this closed-loop
system, the results obtained by the hybrid microfluidic system
are added to the protocol-condition space, allowing a new set
of transition probabilities to be computed; the new DTMC
model is then used in the next iteration of strategy synthesis
and single-cell analysis. The number of cells per iteration
can be specified by the user. By following this approach, the
DTMC model can be changed to adapt to protocol dynamics.

VIII. SIMULATION RESULTS

We implemented CoSyn using C++. All evaluations were
carried out using a 2.7 GHz Intel i5 CPU with 8 GB RAM. The
set of bioassays constituting the single-cell analysis protocol
(Section III) were used as a benchmark. Cell types were
assigned to the cells using a uniform distribution function.

Since this is the first work on synthesis for hybrid microflu-
idic platforms, we have developed two baseline frameworks:
(1) architectural baseline (ArcSyn), wherein the barcoding
fabric is valveless and it utilizes a one-to-one mapping between
syringe pumps and DMFB ports as in Fig. 3(b); (2) algorithmic
baseline (ReSyn), in which resource allocation is initially
performed for each microfluidic domain separately. However,
we must ensure that the system behavior at the boundary
between the two domains is deterministic—the synthesis tool
for the DMFB must be aware of the order of the barcoding
droplets generated from the valve-based crossbar. The only
way to meet this constraint is to disallow pipelining in the
valve-based system; thus an upper bound on the number of
barcoding droplets that can be processed simultaneously is
equal to m. Since we consider a large number of cells, we
divide the cells into batches, each of a maximum size of m
cells, such that ReSyn executes them iteratively.

In the rest of this section, we assume a microfluidic platform
that contains a fully connected crossbar, except Section VIII-D,
in which we investigate variants of the crossbar architecture.

A. Comparison with Baselines
We evaluate the performance of CoSyn, ArcSyn, and ReSyn

in terms of the total completion time for the protocol, measured
in minutes (we assume Tf = Td = 0.2 s). For valve-based
routing, we consider the graph theoretic scheme (i.e., Method
1 from Section VI-B). We fix the number of input cells to 100,
and we consider 20 and 40 barcoding inputs (or cell types).
To ensure that this evaluation is independent of the platform
architecture, the results were obtained using a DMFB with no
resource constraints.

Fig. 12 compares the three synthesis frameworks in terms
of completion times. ReSyn leads to the highest completion
times due to the loose coordination between the DMFB and the
valve-based crossbar. The completion time of CoSyn is close

CoSyn completion time ArcSyn completion time
(Lower bound)ReSyn completion time

(a)                                                                      (b)                                                                          
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Fig. 12: Comparison between CoSyn, ArcSyn, and ReSyn in
terms of completion time: (a) using 20 barcoding inputs, (b)
using 40 barcoding inputs.

to the lower bound, which is obtained using ArcSyn. ArcSyn
uses the maximum number of barcoding outputs due to the
one-to-one mapping between the barcoding inputs and outputs.
Hence, these results indicate that pipelined valve-based routing
and the coordination between the components of CoSyn play
a key role in increasing cell-analysis throughput.
B. Tradeoffs of Valve-Based Routing Schemes

Next, we evaluate the performance and the computation
time of the valve-based routing schemes by using CoSyn
simulations. We refer to CoSyn that utilizes the graph-theoretic
method (Method 1) and the incremental method (Method 2) as
CoSyn-Graph and CoSyn-Inc, respectively. We fix the number
of input cells to 1000 and we consider a DMFB with no
resource constraints. Fig. 13(a) and Fig. 13(b) compare CoSyn-
Graph and CoSyn-Inc in terms of completion times and overall
computation times, respectively, while varying the number of
inputs n and outputs m in the crossbar.

As shown in Fig. 13(a), we observe that the completion
times of both methods exhibit a parabolic behavior with
respect to the crossbar size n×m. First, the completion times
decrease when we increase the crossbar size from 20 × 8
to 50 × 20; the increase in the crossbar size within this
range allows more barcoding droplets to be consumed by the
crossbar, which in turn overshadows the negative impact of
adding more vertical levels. However, when the size increases
beyond 50×20, the impact of having additional vertical levels
appears to be more prominent, leading to an increase in the
completion times for both methods. Finally, we also observe
that the completion time obtained by CoSyn-Inc is at least the
completion time obtained by CoSyn-Graph, and the difference
in the completion time between CoSyn-Graph and CoSyn-Inc
becomes significant when the crossbar size is increased.

Despite the high performance gained by using CoSyn-
Graph, Fig. 13(b) shows that the computation time of CoSyn-
Graph dramatically increases when larger crossbar designs are
used. Therefore, it is obvious that CoSyn-Inc needs to be used
to dynamically synthesize large-scale single-cell analysis.

C. Design-Quality Assessment
We also evaluate the quality of the designs generated by

CoSyn-Graph in terms of the number of single-cell exper-
iments that can be completed for a given time limit and
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Fig. 13: Comparison between CoSyn-Graph and CoSyn-Inc:
(a) completion time, (b) computation time (logarithmic scale).

the given number of DMFB resources. In addition, we also
quantify the fraction of input cells that can be processed simul-
taneously by the given set of DMFB resources. Our objective
here is to investigate the conditions under which CoSyn-Graph
is effective. Therefore, we introduce the following terms:
Cell-analysis density: The number of cells (samples) that
completed analysis during a specific window of time (cell
throughput), using a given array of electrodes. The time
window is set to be a minute and the size of the array is
equal to 100 electrodes.
DMFB capacity: A real number z ∈ [0, 1] that provides the
fraction of input cells that can be processed simultaneously
using DMFB resources. For example, a capacity of 1 indicates
that there are sufficient resources to process all the cells
simultaneously. On the other hand, a capacity of 0.5 means
that the existing resources are sufficient for simultaneously
processing only half of the cells.

We investigate the design-quality for valve-based crossbars
by evaluating the cell-analysis density of CoSyn-Graph and
ArcSyn. We simulate the execution of 50 cells using 4 bar-
coding outputs (Fig. 14(a)), 8 barcoding outputs (Fig. 14(b)),
12 barcoding outputs (Fig. 14(c)), and 20 barcoding outputs
(Fig. 14(d)). The density values are computed while the
capacity is varied. By comparing the density values for CoSyn-
Graph and ArcSyn, we observe two regimes: (1) Regime I in
which the cell-analysis density of CoSyn-Graph is higher, i.e.,
it is more effective; (2) Regime II in which the density of
CoSyn-Graph is less than or equal to the density of ArcSyn.
Regime I highlights the fact that CoSyn-Graph efficiently
exploits valve-based barcoding, and the power of valve-based
pipelining is evident when the DMFB resources are limited.
On the other hand, the overprovisioning of resources leads
to Regime II, where a lower cell-analysis density is reported.
Finally, we note that Regime I shrinks as we increase the
number of barcoding outputs; this is expected since CoSyn-
Graph is more effective in the realistic case of a limited number
of barcoding interfaces.

D. Crossbar Connectivity: Performance vs. Flexibility
We also study the impact of crossbar connectivity on the

system performance and the routing flexibility. We use archi-
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Fig. 14: Comparison between CoSyn-Graph and ArcSyn in
terms of cell-analysis density using (a) 4 barcoding outputs,
(b) 8 barcoding outputs, (c) 12 barcoding outputs, and (d) 20
barcoding outputs.

TABLE IV: Flexibility of crossbar variants (fx).
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Fig. 15: Comparison between crossbar variants using protocol
completion time.

tecture variants Fcln×m of an n-to-m crossbar; the parameters
n, m, and cl denote the number of crossbar inputs, the number
of crossbar outputs, and the number of output clusters, re-
spectively (Section VI-D). For evaluation purposes, we simply
measure the flexibility, denoted by fx(m, cl), of a crossbar
variant Fcln×m using the following relation: fx(m, cl) = m

cl ,
which represents the effective number of output ports reachable
from an input port. Also, we simulate the execution of 1000
cells using CoSyn-Inc, and we consider an 80-to-32 crossbar
(n = 80 and m = 32). Moreover, to ensure that this evaluation
applies to any DMFB architecture, the results were obtained
using three DMFBs that have the following resource capacities
z: 0.6, 0.8, and 1.

As shown in Table. IV, as the number of output clusters
increases, the flexibility fx of the crossbar design decreases.
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On the other hand, as shown in Fig. 15, we observe that the
total completion time decreases when the number of clusters
increases—this result is due to the reduction in the number of
vertical levels q and thus the routing distance of the barcoding
droplets.

E. Analysis of Markov Model
To understand the impact of protocol conditions and ex-

periment budget on the protocol efficiency, we run model
checking on the DTMC model described in Fig. 11, where
the number of cells is equal to 6. We investigate the impact
of three experimental factors: the number of washing steps
(WTot), the number of fixation time steps (fixT imeTot), and
the number of master mixes (MixesTot). For this purpose, we
use PRISM [45] to implement the DTMC model along with
the following PCTL query that expresses the model objective:

Q := Pmax=?[(�(!Failure)) U (♦WithinBudget)]

The query Q seeks the maximum probability that the pro-
tocol will globally avoid the state Failure “until” eventually
reaching the success state, i.e., the state WithinBudget. The
operator � means “globally”, the operator U means “until”,
and the operator ♦ means “eventually”. The maximum prob-
ability can be computed using value iteration algorithm [46].
By running this query using PRISM, we can obtain the optimal
protocol strategy that maximizes the probability of satisfying
the target predicate, i.e., the processed cells contribute to high
efficiency and the experiment budget is not exceeded.

Fig. 16 shows the obtained results, which illustrate the
impact of experiment budget on the probability that single-
cell analysis completes successfully under the optimal protocol
strategy. It is obvious that the success probability increases
when we increase the experiment budget. We also observe that
the success probability is close to 1 only if there are sufficiently
large quantities of washing liquid and master mixes and if we
allow more time for fixation.

These results highlight the need to incorporate stochastic be-
havior of a single-cell protocol into any synthesis methodology
since it has a significant impact on the protocol efficiency.

IX. CONCLUSION

We have introduced the first automated design method for
single-cell analysis using a cyberphysical microfluidic plat-
form. This design coordinates the control of diverse microflu-
idic components and concurrently processes a large number
of sample pathways. We have also presented a probabilistic
model of the single-cell analysis protocol based on DTMCs.
This model captures experimental settings where protocol con-
ditions are specified in a probabilistic manner. The proposed
platform has been evaluated on the basis of the time needed for
analysis and the biochip size needed for realistic test cases.
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