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Abstract—This paper presents a research vision to design a large-scale cyberphysical systems (CPS) experimental framework to enable
collaborative and coordinated molecular biology studies. This framework will be based on the integration of CPS with microfluidic biochips and
cloud computing. It has the potential to drastically advance personalized medicine through knowledge fusion among many research groups, and
synchronization of research planning. This framework therefore leads to a better understanding of diseases such as cancer, and helps researchers
in identifying effective treatments. A case study from cancer research is discussed to explain the significance of our framework in promoting
coordinated genomic studies.
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1 INTRODUCTION

PERSONALIZED medicine represents a bold research effort that
can revolutionize healthcare and the treatment of diseases

such as cancer. In the past, most medical treatments were de-
signed for the “average patient”; such an approach, known as
the one-size-fits-all, was deemed to be successful for some cancer
patients but not for others. As a result, the Precision Medicine
Initiative was launched in 2015 with a $215 million investment to
provide clinicians with new technologies, tools, knowledge, and
match therapies to patients [1]. Advances in precision medicine
will lead to powerful new techniques and treatments that are tai-
lored to specific characteristics of individuals, such as a person’s
genetic makeup.

Microfluidics is a key technology that enables advances in per-
sonalized medicine. Breakthroughs in microfluidics and genome
technologies can significantly advance personalized cancer treat-
ment and transform clinical diagnostics from the bench to the
bedside. Ultimately, with portable microfluidic devices, patients
with breast, lung, and colorectal cancers, for instance, will be able
to routinely undergo point-of-care molecular testing as part of
patient care, enabling physicians to precisely select treatments
that improve the chances of cure. These repeated test results,
coupled with timestamps, situational information (time, location,
and environment of such tests), and personal information (age,
weight, height, gender, etc.), will form the data fabric that can
not only highlight the medical condition of an individual but
also collectively inform the evolution of the state of the popula-
tion, for instance, early detection of potential outbreak of highly
contagious diseases. In other words, this microfluidic service
has the potential to perform complicated genomic studies (e.g.,
epigenetics [2]) to assist in cancer research, provide point-of-care
clinical diagnostics, and accelerate drug development.
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One of the most important application areas in cancer-
genomics research is the interplay between single-cell biology
and omics technologies (i.e., DNA sequences, RNA expression
levels, proteomics, and other epigenetic markers) and its im-
pact on disease development and evolution (i.e., association
studies) [3]. Single-cell biology utilizes several microfluidic and
computational techniques, with an ultimate goal of constructing
a genome-wide catalog of genetic, epigenetic, and transcriptomic
elements [4], [5]. As shown in Fig. 1, single-cell microfluidic
techniques are used to generate omic data from cancer cells;
this data is managed and analyzed by computational methods to
identify clusters, lineages, and networks, which in turn generate
new biological hypotheses. In other words, the contributions
to data analysis include two aspects: (1) improved, large-scale
machine learning techniques through big genomic data, which
will result in more powerful algorithms; (2) human-centric collab-
orative environment to facilitate communication, collaboration,
and synchronization of diverse, microfluidics-based research fa-
cilities. Next, biological findings, in turn, guide the development
of new microfluidic experiments and computational studies [6].
Specifically, the circular process shown in Fig. 1 needs to be
selectively iterated hundreds to thousands of times using cells
from a variety of cell populations and tissues. Such an iterative
approach enables us to draw precise conclusions about the types
and states of these cells, the effective biomarkers that influence
genomic or transcriptomic behavior at different loci, and to finally
re-focus the scope of subsequent iterations of single-cell analysis.
Nevertheless, the application of genome-wide association studies
at the single-cell level is extremely complicated and it is hindered
by several technical limitations, one of which is the need for a
reliable, self-adaptive, and high-throughput control scheme that
readily coordinates the experiments of single-cell analysis at a
large scale.

Current research methods for single-cell genomic-association
studies belong to one of the following categories: (1) extrapolated
single-cell methods, which rely on the in-vivo findings of a certain
level of biological systems or a single omic data type, such as
DNA sequences or RNA expression levels, to extrapolate the
results or conclusions of cell subpopulations; this approach is
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Fig. 1: Iterative genomic-association analysis using microfluidic
and computational methods.

pursued by experimentalists using high-throughput microfluidics
on real biological systems; however, the analysis that assesses the
variation of only a single omic data type can miss complex models
that require variation across multiple levels of biological regu-
lation, (2) static data integration techniques, which are applied
to large omics data generated from multi-source experimental
setting [3]. The development of such analytical methods aims to
harness the utility of these comprehensive high-throughput data
to elucidate important biomakers. Nevertheless, decoupling such
analytical methods from experimental biology expertise does not
lead to efficient search techniques for patterns over very large
collections of omic data in very high dimension [7]; i.e., raw
massive genomic data is not efficiently exploited.

It is evident that the gap between the two approaches repre-
sent a technological barrier for researchers against developing an
integrative, highly adaptive analysis framework that can relate
changes in molecular measurements to disease development,
behaviour, and evolution. We describe our vision to close this gap
by investigating an interactive CPS for a cloud-based microfluidic
service in the Internet of Things (IoT) framework, referred to as
BioCyBig. This CPS framework will introduce Microfluidics-as-a-
Service (MaaS) for genomic association studies and provide the
following benefits:

• It will coordinate the operation of a large number of mi-
crofluidic devices (referred to as nodes) to dynamically pro-
cess iterations of single-cell analysis with high-throughput
sequencing control. This approach will pave the way for IoT-
enabled real-time collaborative experiments, whereby large
number of labs and researchers will be able to coordinate
experiments, guide each other, and immediately make deci-
sions on follow-up biochemical protocols or procedures.

• It will leverage the capability of a big-data infrastructure to
cumulatively build and enhance the accuracy of biomarker-
influence and lineage networks besides cell-type clustering.

• By coupling cyberphysical integration and big-data infras-
tructure, it will introduce a physical-aware (self-adaptive)
microfluidic system, which can reconfigures its nodes (i.e.,
refocus its analysis scope) based on the dynamic restruc-
turing of computational models—such reconfiguration can
be performed either automatically or using human-in-the-
loop. This design facilitates sharing genomes and related
omics data among researchers, and enables the coordination

Fig. 2: Schematic view of: (a) flow-based microfluidic biochips; (b)
digital-microfluidic biochips.

of thousands of nodes.
This paper presents a framework to investigate the interplay

between different technologies—microfluidic biochips, biochem-
ical analysis protocols, cyberphysical adaptation, as well big
data and cloud computing. We have identified a problem that
currently has no solution: a large-scale biochemistry experimental
framework based on microfluidics as a service. The proposed
multi-layer system architecture and control mechanisms would
allow an efficient distributed experimental infrastructure to blos-
som.

The rest of the paper is organized as follows. An overview
about microfluidics technology and biological systems is intro-
duced in Section 2. A case study from cancer research is presented
in Section 3 to demonstrate the significance of the proposed
framework, BioCyBig. Next, Section 4 depicts the overall archi-
tecture of BioCyBig, whereas Sections 5, 6, and 7 discuss the
anticipated design challenges and research opportunities at the
application level, the microfluidics level, and the middleware
level, respectively. Finally, conclusions are drawn in Section 8.

2 BACKGROUND

In this section, we present an overview of microfluidics technolo-
gies. In addition, the biological pathway of gene expression is also
elucidated.

2.1 Microfluidics Technology Platforms

Microfluidic biochips (or lab-on-a-chip “LoC”) are typically
centimeter-sized devices, with on-chip components having mi-
crometer feature lengths. Miniaturization speeds up chemical
reactions and analytical detection; automation and parallelization
make it possible to carry out a massive number of different tests
simultaneously. These characteristics, especially the delivery of
results for a large number of tests within a short amount of
time, are especially relevant for clinical diagnostics, genomics,
and drug discovery.

Flow-based microfluidic biochips constitute an exciting
emerging technology that enables the integration of fluid-
handling operations [8]. Continuous liquid flow with picoliter
volumes in a flow-based microfluidic biochip can be achieved
in etched microchannels in the “flow layer”. Through thousands
of integrated microvalves in the “control layer”, different fluid-
handling operations, such as mixing, dilution and transportation,
can be easily implemented [9], [10] (Fig. 2(a)).

Recent advances in fabrication techniques, including the ap-
plication of polydimethylsiloxane (PDMS) and dense integration
of active microvalves, have enabled the development of flow-
based microfluidic biochips. These devices allow a transition
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from a simple topology with only a few channels to large-scale
networks of channels for realistic applications [11]. Increasing
integration levels provide biochips with tremendous potential;
hundreds of different bioassays, i.e., protocols for biochemistry,
can be processed independently, simultaneously, and automati-
cally on a coin-sized microfluidic platform [12]. These advances
therefore allow massively parallel biochemical processing and
immediate point-of-care disease diagnosis [13]. In 2011, Flu-
idigm, a biotech company that focuses on flow-based microfluidic
biochips, launched its initial public offering at NASDAQ, which
is a significant milestone in the maturation of the microfluidics
industry.

Digital microfluidics has heralded the second (and remarkably
advanced) generation of biochips. It is based on electrowetting-
on-dielectric (EWOD), which refers to the modulation of the inter-
facial tension between a liquid and a solid electrode coated with
a dielectric layer by applying an electric field [14]. This approach
utilizes tiny droplets as on-chip biochemistry carriers. An on-
chip array of electrodes, which are addressable through electronic
control, can manipulate each droplet electrically, as shown in
Fig. 2(b). A set of programmable instructions enables on-chip
chemical reactions. Multi-step and complex analytical tasks can
be performed with digital microfluidics via a combination of
droplet operations (formation, merge, split and migration). By
exploiting the reconfigurability inherent in digital microfluidics,
these devices are revolutionizing a wide range of applications,
such as high-throughput sequencing, parallel immunoassays,
clinical diagnostics, DNA sequencing, and protein crystallization.

According to a recent announcement by Illumina, a market
leader in DNA sequencing, digital microfluidics has been transi-
tioned to the marketplace for sample preparation [15]. This signif-
icant milestone highlights the emergence of digital-microfluidic
biochip (DMFB) technology for commercial exploitation and its
potential for point-of-care diagnosis [16], proteomic sample pro-
cessing [17], and cell-based assays.

2.2 “Operating Systems” Research for Microfluidics and
Our Vision to Expand into IoT Space

When the potential of microfluidic biochips was recognized in the
late 90s, concerns were raised that higher design complexity will
have to be addressed due to the need for multiple and concurrent
bioassays on the chip. For example, inexpensive biochips for
clinical diagnostics will integrate hematology, pathology, molec-
ular diagnostics, cytology, microbiology, and serology onto the
same platform. Motivated by this vision, efforts emerged in the
research community to identify synergies between biochips and
architectures for computing systems, and a number of automated
design and optimization techniques were developed [18], [19]. In
the past few years, a new line of innovative thinking has emerged
in this area, which is driven by the need to design cyberphysical
microfluidic biochips that provide tight coupling between the mi-
crofluidic hardware platform, integrated sensors, and the control
software. Such cyberphysical systems allow dynamic adaptation
for more flexible biochemistry-on-chip and error recovery on the
fly [20].

Past research on software for digital microfluidics focused
on scheduling of fluidic operations, resource binding, droplet
routing, etc. [21], [22]. Algorithms for on-chip sample prepara-
tion [23], cross-contamination avoidance [24], designs for protein
crystallization [25], and optimization methods for protocols such
as polymerase chain reaction (PCR) have been developed [26].

Real-life demonstrations of the interplay between hardware and
software in the biochip platform have been displayed in [27], [28].
These demos highlight autonomous cyberphysical operation for
error recovery; i.e., they support hardware/software co-design
for lab-on-chip.

While previous methods are limited to simple droplet manip-
ulation, there is now a need to advance cyberphysical control
of microfluidic biochips to make them useful for biologists. In
order to map molecular biology procedures from the bench-top
to a biochip, a real-time synthesis methodology was recently
introduced to efficiently run quantitative gene-expression analy-
sis and epigenetics [29], [30]. This methodology paves the way
for cyberphysical microfluidic biochips to be widely adopted
in biomolecular applications, especially for genomic association
studies.

Similarly, there has been a considerable body of research
in design automation of flow-based microfluidic biochips that
utilize membrane-based valves for flow control [31]. Solutions
for control-layer routing [32], [33] and wash optimization [34], as
well as manufacturing testing and fault diagnosis [35], [36] have
been investigated.

Despite the rich literature in design automation of microflu-
idic biochips, the incorporation of these biochips in an IoT-
enabled framework poses new challenges at different design lev-
els; namely the microfluidic, middleware, and application layers.
Besides biochip-level cyberphysical control, a new infrastructure
for cloud-level cyberphysical adaptation is required to support
the complexity and scalability of genomic association studies.
Furthermore, integrative methods of biology tracking and anal-
ysis across thousands of microfluidic “nodes” become necessary
for efficient coordiation. In this paper, we investigate several
design challenges, at different architectural layers, and potential
solutions that can make BioCyBig a reality.

2.3 Biological Pathway of Gene Expression and Omic Data

Genomic association mechanisms and the associated omic data
are linked to different stages of the gene-expression pathway.
In the gene-expression process (Fig. 3), a particular segment of
DNA is enzymatically processed, or transcribed, into an RNA
molecule. Then, a specific product of RNA, namely messenger
RNA (mRNA), can be expressed and contribute to the translation
process. This step leads to proteins that form the functions of our
life. Notably, the DNA sequences involved in the establishment of
proteins are said to be “expressed genes”. On the other hand, the
DNA sequences that do not elucidate a high level of expression
(i.e., sequences that are not regularly transcribed or are under the
influence of “epigenetic transcriptional control”) are said to be
“silenced/suppressed genes”.

Heterogeneous omic data exist within and between stages of
gene-expression pathway [37]. For example, analysis of single-
nucleotide polymorphism (SNP) and copy-number variation
(CNV) can be applied at the genome level. Next, DNA methy-
lation, histone modification, and chromatin accessibility are in-
vestigated at the epigenome level. Note that genes with similar
DNA sequence (genome level) may not necessarily show the
same expression behaviour due to variation in chromatin accessi-
bility (epigenome level); see Fig. 3. In fact, silencing of a certain
gene through tight chromatin packaging is enforced by a protein
expressed from another gene located upstream or downstream
from the suppressed gene. The search for such complicated inter-
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Fig. 3: The biological pathway inside a cell, and the phases of
omic-data generation: genome, epigenome, transcriptome, and
proteome.

action among thousands of genes is what motivates the need for
BioCyBig.

At the transcriptome level, gene-expression analysis can be
carried out, whereas analysis of protein expression or post-
translational modification can be conducted at the proteome
level. Finally, at the far end of the biological pathway, metabolite
profiling in serum, plasma, etc. can be employed. To extract a
certain type of omic data, dedicated bioassay protocols have been
implemented using microfluidics in an isolated environment—
Table 1 lists examples of such miniaturized protocols. However,
only an integrative, multi-omics study of biological systems from
genome, epigenome, transcriptome, proteome, and metabolome
can lead to the identification of phenome; that is key to recog-
nize serious diagnostic conditions, such as cancer or metabolic
syndrome [38]. Our cyberphysical framework facilitates the co-
ordination and management of thousdands of bioassay protocols
running interactively to generate usable multi-omic data in an
efficient manner. The details of the computational techniques as-
sociated with each omic data type and the integrative approaches
for multi-omics are omitted due to space limitations.

Table 1: Miniaturized Protocols for Genomic-Association Studies

Pathway Omics Biological Property Microfluidic Protocol
Genome SNP genotypying Mass spectrometry [39]
Epigenome DNA CpG methylation Bisulfite sequencing [40]
Transcriptome Gene expression qPCR [41]
Proteome Protein-DNA interactions ChIP-seq [5]
Metabolome Lactate release Fluorescence-based [42]

3 CASE STUDY: INTEGRATIVE MULTI-OMIC INVESTI-
GATION OF BREAST CANCER

Breast cancer, like all cancer diseases, is triggered through abnor-
mal changes in a combination of heterogeneous, yet inter-related,
biological processes, including gene mutations, DNA methy-
lation, and modifications in gene regulation and metabolism.
Changes in each mechanism arise due to the activity of specific
genes, which need to be identified. Combining this data leads

to a genomic network that explains the multivariate association
model.

Our approach not only enables progressive disease mod-
els with higher resolution over time, but it also improves our
understanding of the adaptive evolutionary changes of cancer
diseases [43], specially when geographically scattered microflu-
idic devices are involved. A special case of our progressive
methodology has been proposed for studying metabolic models
in biological systems [44].

Herein, we present a simplified case study that elucidates
the need for an integrative multi-omic analysis for investigating
breast cancer [37]. We also explain BioCyBig’s role in exploring
complex models of such a disease.

3.1 Multi-Omics of Breast Cancer
The goal of the study is to pinpoint the root causes of breast
cancer (i.e., biomarkers). As a first step, thousands of cancerous
cells must be extracted from fresh tumor tissue. Next, these cells
need to be run while observing different aspects of the biologi-
cal pathway (e.g., targeting genomic, epigenomic, proteomic, or
metabolic associations) to construct a precise disease model using
the generated multi-omic data. Note that it is difficult to obtain
a large number of samples from a fresh tissue at the same site;
such a limitation represents one of the bottlenecks for today’s
analysis techniques. Obviously, an IoT-enabled, microfluidics-
driven service facilitates data integration and coordination among
multiple sites.

To identify the breast-cancer model, we need to measure
and integrate four types of omic data: common genetic variants
(genome level), DNA methylation (epigenome level), gene ex-
pression (transcriptome level), and protein expression (proteome
level). The problem objective is to construct a representative
breast-cancer model based on these omics data, where gene
expression is co-regulated by both DNA methylation and ge-
netic variants. This model can be used as a disease signature to
identify patients with similar tumor characteristics via clustering
techniques. Thus, the model description is given below:
• [Constraints] Number of cancerous samples extracted from

fresh tumor tissue per site.
• [Variables] x : Selected gene probes; y : SNPs around each

gene probe per window size∗ (genomic data); z : CpGs
around each gene probe per window size (epigenomic data);
w : protein expression (proteomic data).

• [Output] f : Gene expression (transcriptomic data).
• [Integrative Analysis] Multi-staged, concatenation-based re-

gression techniques†.
Fig. 4 shows the multi-omic analysis flow for breast cancer

investigation [37]—we apply this flow to both cancer and nor-
mal cells for comparison. First, genotyping of tumor samples is
performed to select gene probes and to determine the associated
SNPs per each gene probe within a pre-specified window size
(e.g., 1 MB window). Next, regression techniques are applied to
assess the association between each expression probe and the
SNPs in single and multivariate models (e.g., SNP-CpG [38]).
The SNPs of probes with increasing expression activity, such as
CYP1B1 gene, may result in high risks of carcinogenic instances.

∗. A window encompassing the gene of interest is measured in terms of
megabases (MBs).
†. A valid assumptions here is that the relationship between genotype

and phenotype can be modeled in a linear manner, as is the case for SNPs
associated with metabolites [37].
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Fig. 4: Flow of integrative genomic-association analysis for breast
cancer.
Likewise, genetic rare variants (or SNPs) in COMT gene can
reduce the metabolism of carcinogenic product, resulting in a
higher level of DNA damage. Even so, these variations may not
increase the risk of cancer if the DNA-damage repair can ade-
quately absorb carcinogenic metabolites. In other words, using
variations in genetic and transcriptomic association solely as a
signature for breast cancer could be misleading.

To refine the model, epigenomic and proteomic data must
be integrated in the analysis flow; thus, CpG methylation data
is generated and associated with gene expression. Accordingly,
higher levels of methylation at XRCC1 gene and variation in the
gene expression of XRCC3 result in reduced transcription levels,
and the repair mechanism may no longer be able to adequately
keep DNA repair at necessary levels. Even though inadequate
rate of DNA-damage repair likely indicates a carcinogenic tissue,
dysregulated protein expression of genes in the cell cycle pathway
(e.g., CDK1) may result in a rate of cell replication that is higher
than average and therefore reduces the impact of damaged cells.
Hence, protein-expression analysis is equally important.

While it is evident that a study of all of the variation men-
tioned above is required to assess cancer development, construct-
ing such a model requires significant quantities of samples, major
effort in experimental work and interactive research, and sophis-
ticated computation utility. These requirements can be realized
using our framework.

3.2 The Use of BioCyBig

The adoption of BioCyBig as a solution for breast-cancer analysis
brings the following advantages.

• BioCyBig provides unification of research goals, which en-
ables efficient exploitation of multi-site benchtop resources
(e.g., tissue samples, reagents, and workers). Such a coor-
dination allows precise modeling of cancer, for example,
through directing a research site to focus their study on
specific genome loci; enabling them to increase the number
of gene probes per locus and thereby the system precision. In
analogy with electronic systems, this is similar to increasing
the number of representation bits of an analog signal during
analog-to-digital conversion.

• The big-data infrastructure can be seamlessly exploited for
high-dimensional machine learning and data mining, giving
a significant advantage for cancer researchers. For example,

Fig. 5: Flow of integrative genomic-association analysis for breast
cancer.

sophisticated Bayesian inference can be employed for assess-
ing cancer risk or for predicting patient survivorship.

• Deploying BioCyBig as an open framework and reporting
on constructive progress of multi-omic disease models will
encourage researchers to contribute under the umbrella of
BioCyBig.

Fig. 5 shows the timeline of a typical scenario for the interac-
tions between BioCyBig and breast-cancer researchers, following
the logical sequence in Fig. 4. Note that a microfluidics-based fa-
cility can communicate with BioCyBig, via a handshaking mecha-
nism, to run a bioassay protocol and augment the genomic model
of a disease (i.e., “write” mode) based on a “call” from BioCyBig.
Alternatively, a researcher can inquire about the current status of
the model (i.e., “read” mode) for diagnosis purposes.

3.3 Working Example: CanLib

To facilitate the understanding of the BioCyBig architecture and
explain the system components (Sections 5-7), we consider an
example derived from the above case study of breast-cancer
research. In this example, referred to as CanLib, BioCyBig is
utilized to investigate the association between three types of
omic data: (1) common genetic variants (via SNPs); (2) DNA
methylation (via CpGs); (3) gene-expression level. The measure-
ment of gene-expression level is performed by microfluidics-
based fluorescence detection. BioCyBig collects expression data,
integratively builds an association model for cancer (referred to as
SNP+CpG) through a penalized regression method, assesses the
significance of the model and provides cyberphysical adaptation
with the aid of visual analytics. The objective is to study the
expression of 21,000 gene probes, and the initial SNPs/CpGs
window size for each probe is 1 Megabase. The results of the first
iteration are collected from 3000 samples located at multiple sites.
According to [38], it is expected that nearly 1 million SNPs and
400,000 CpGs might contribute data due to this window size. The
contributing SNPs and CpGs are also referred to as transcription
factors. Based on the above setting, we estimate that the size of
the raw data generated in the first round to be approximately
21, 000× 3000× 1, 400, 000× 4 Bytes per entry ≈ 353 Terabytes.
This value only considers static data, i.e., it does not take into
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Fig. 6: Illustration of components and data flow in BioCyBig.

account the dynamic data generated at runtime due to statistical
analysis. BioCyBig is clearly motivated by the complexity of
the lab procedures for this example, which considers the large
number of model parameters but is nevertheless limited to only
three types of omics. In practice, the association between more
than three types of omic data will need to be studied.

4 THE PROPOSED FRAMEWORK: BIOCYBIG
In this section, we discuss the system architecture of the proposed
framework.

4.1 Overall System Architecture Design

Our premise is that significant rethinking in system design
is needed to leverage big-data infrastructure, CPS adaptation,
and human-system interaction for distributed bioassay protocols.
Fig. 6 shows a high-level view of the system components. The
realization of a cloud-based microfluidic service requires the
development and integration of four main components: [C1]
cloud software infrastructure; [C2] distributed-system compo-
nent; [C3] microfluidic biochip (node) component; [C4] human-
interface component. The component [C1] hosts all the adap-
tive data-mining and machine-leaning models in the cloud. It
also distributes the computational effort for constructing the
multi-omics models using a cloud framework such as Apache
Spark [45]. The coordination among the components [C1], [C3]
and [C4] are carried out at [C2]. The implementation of the actual
microbiology protocols, either based on a feedback from [C1]
or a human operator acting through [C4], is performed through
[C3]. Finally, the component [C4] incorporates human interaction,
which enables a human operator to visualize the obtained results
at [C1], launch quick analytics procedures at runtime, and in-
stantaneously control the distribution of biochemical assay (tasks)
among [C3] nodes, based on technical or budgetary constraints. It
is necessary to integrate these components to enable the seamless
on-chip execution of complicated biochemical protocols across
multiple devices, using the power of big-data analytics.

Since this is a big-data solution and intended for wide commu-
nity use, the entire stack needs to be built with open-source big-
data software including scalable machine learning environment
such as Apache Spark, scalable, highly-available, fault-tolerant
data store such as Apache Cassandra [46], and visual analytics

Fig. 7: Software stack of BioCyBig.

toolings such as Standford Seaborn [47]. Fig. 7 outlines our
vision for the software stack matched with the system-component
schematic in Fig. 6. Blue boxes represent the components on the
cloud side, whereas the green ones indicate the client compo-
nents. Apache Cassandra is chosen as a distributed-data store
that can directly interface with the sea of client microfluidic
nodes. LoC-to-cloud interface utilities (adapters) are required to
enable a microfluidic node to directly write data into Cassandra
(Omic-Logging Utility). As shown in Fig. 7, Apache Spark clus-
ter overlays on top of Cassandra to allow Spark to efficiently
process complex, real-time streaming data stored in Cassandra.
Apache Spark serves as our general-purpose distributed compute
workhorse where many diverse multi-omics computational appli-
cations (e.g., graph data, machine learning, etc.) can be executed.
To serve the visual analytics vertical application for human-
system interaction, Spark will synthesize the diverse, dynamic
data collected by Cassandra and write the results into Seaborn
guided by a set of Python APIs that will describe visual analytics
objectives. Seaborn dashboards will interactively display relevant
biological and operational reports to an end user, and assist in
making decisions.

4.2 Cloud Software and Human-Interface System

To improve our understanding of genomic association mecha-
nisms, the development of novel computational tools has become
an integral part of large-scale data analysis; such tools aim at
converting raw data signals obtained from experimental setting
to quantitative biological information. Significant effort has been
devoted to addressing several challenges arising with omic data
analysis [6]. For instance, due to the high dimensionality of single-
cell data, enabling data visualization requires the application of
specific dimensionality-reduction approaches that map the data
points into a lower-dimensional space while maintaining the
single-cell resolution [48]. Unsupervised clustering is widely used
to group samples with similar genomic properties, which can
be used to identify previously unknown subpopulations from
multi-omic data. Specifying the set of genes that discriminate
these subpopulations has also been studied using relevant com-
putational tools [49]. Network modeling can provide mechanistic
insights into lineage relationships and the coordination of gene
activities to help in understanding the overall dynamics of the
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biological system. Taken together, applications of multi-omic data
analysis greatly enhance the power of systematic characterization
of cancer heterogeneity.

4.3 Distributed-System Architecture
An efficient coordination among multiple (heterogeneous) mi-
crofluidic devices and the cloud triggers the need for a new
sensor-actor coordination model, which takes into account the
specific properties of integrative multi-omics analysis. Related
concepts of coordination and communication have been pre-
viously studied in systems powered with wireless sensor net-
works [50]. Similarly, a distributed-system design can be lever-
aged to collect omic data out of the microfluidic devices (sensing
action). In addition, the control decisions communicated from
the cloud software or the human interface are managed at this
level (actuation action). At the level of large-scale genomic asso-
ciation analysis, the process of management and communication
of control decisions is critical and it needs to be carefully studied.
Several management criteria can be employed for allocating and
prioritizing biochemical analysis at different microfluidic nodes.
For example, a situational criterion can be used to focus biochem-
ical analysis at certain locations in order to depict the evolution
state of subpopulations, leading to an early detection of potential
outbreak of highly contagious disease. Another example is the
level of expertise, in which elaborate microfluidic-based biochem-
ical analysis of liver and breast cancerous cells are performed
separately at the associated research centers. Gathering informa-
tion from different specialized institutions/centers will support
researchers with a big picture of cancer and other diseases, and
ultimately lead to a better understanding of the mechanisms
behind drug resistance.

4.4 Plug-and-Play Control of Microfluidic Devices
The key technology behind the proposed cloud-based analysis
system is microfluidics, which offers significant advantages for
performing high-throughput screens and sensitive assays. Var-
ious microfluidic technologies (e.g., flow-based, droplet-based,
and digital microfluidics) have been presented in the literature for
genomic association analysis, targeting epigenome [5], transcrip-
tome, proteome [51], etc. To seamlessly coordinate microfluidic
nodes, it is necessary to develop a control methodology that is
acquainted with various microfluidic technologies. A universal
(canonical) control interface can be designed and customizations
to specific technologies can be realized through “adapters”. The
design of the control interface and the adapters will include
software synthesis to complement the available hardware. This
standardized design of such a control interface will facilitate the
plug-and-play addition of microfluidic nodes.

Logging utility tools (e.g., Omic-Logging Utility) can enable
both the Lagrangian traces that record the complete fulfillment
flow (e.g., which microfluidic devices worked on this biochemical
experiment, when and with what outcome) and the Eulerian
traces that record all state changes of a device (e.g., when this
component is up, down, faulty, performing which type of opera-
tions on which experiment, and associated resource usages). This
utility tool can be invoked by any biochip firmware to enable full
tracing coverage in the host application.

4.5 Relationship to “Big Data” Community Goals
BioCyBig is aligned with the “Big Data” community’s key goal of
fostering smart and connected communities and utilizing IoT to

benefit society. Our framework also offers fundamental advances
into medical research by leveraging machine learning, cloud
computing, and recent advances in lab-on-chip as IoT devices.
It explores a completely new opportunity to rethink the princi-
ples and methods of systems engineering that are built on the
foundations of real-time control, data analytics, and cyberphysical
microfluidic biochips. The proposed solution investigates new
engineering principles that are needed to advance personalized
medicine and patient care for diseases such as cancer. It provides
the means for controlling/coordinating distributed biochemistry
experiments. Our choice of using open-source tools in the design
is to facilitate easy adoption and technology transition. Un-
like previous cyberphysical designs of microfluidic biochips, the
asssessment of BioCyBig requires a combination of microfluidics-
related benchmarks (e.g., technology parameters and protocols)
and functional genomic data that are publicly available [52].

BioCyBig relies on three inter-related layers; namely applica-
tion, middleware, and microfluidic layers. In the following three
sections, we discuss design aspects and solutions of each layer.
The realization of CanLib components is used as a motivating
example in these sections.

5 BIOCYBIG APPLICATION STACK

We anticipate that multi-omic data will be collected from poten-
tially thousands of microfluidic devices, which run biochemical
experiments asynchronously. Therefore, due to the emerging
complexity of the collected data, not only because of the data
size but also the asynchronicity of the communicated signals,
genomic-association applications (e.g., lineage inference, gene-
regulatory networks, and unsupervised cell clustering) need
to be populated on the cloud and accessed/delivered in the
form of Software-as-a-Service (SaaS) model. To improve system
productivity and engage more participants, techniques such as
gamification can be used. A breakdown of the design aspects
involved in this stack is given in this section.

5.1 Development of Scalable, Integrative Multi-Omic Appli-
cations on a Cloud Service

The development of novel computational tools is an integral
part of genomic-association analysis; such tools nowadays come
in one of two forms: (1) methods for studying the correlation
between a single omic data type and gene expression; e.g., tran-
scriptomic clustering techniques [53]; (2) integrative methods to
combine different types of omics methodologies into a unified
toolbox; e.g., adapted regression methods [38]. Even though
such computational tools have emerged recently as an extension
to single-cell benchtop work, the underlying machine learning
models (highlighted below) are static and these methods rely
on offline learning mechanisms. Thus there are concerns about
their scalability for genome-wide association analysis and their
applicability for cyberphysical adaptation. As a first step, it is
necessary to analyze scalability of these techniques when multi-
omic data streams (from different sources) are communicated.
The evaluation metrics are computation time, computation accu-
racy, and system response time. Second, it is required to develop
a methodology to port these offline tools into online frameworks,
which interact with data from multiple sources in near-real time.
Online machine-learning tools became prominent with the in-
troduction of big data, and their role needs to be explored for
genomic-association applications. Third, there is a need to design
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Fig. 8: Flowchart of computational single-cell analysis meth-
ods [6].

an automated delivery system that feeds data streams, received
from the middleware, into the online learning models.

Fig. 8 shows a typical flowchart for single-cell genomic-
association applications that need to be imported to the cloud
using Apache Spark. Preprocessing and quantification are the first
steps in any large-scale data analysis. The purpose of these steps
is to convert raw data to quantitative biological information. In
addition, significant effort is paid to the estimation and removal
of systematic biases due to technical variability. A major issue in
genomic analysis is that technical variation is always confounded
with biological variation. Methods that aim at building error
models [49] to account for biological biases, or constructing nor-
malization techniques to correct the biases at an early stage [54],
have been presented for the specific loci of a specific omic instance
and they have been developed to run offline. Our solution aims
at looking into algorithmic techniques to scale these methods and
to incorporate cyberphysical, online adaptation feature into the
application.

The high dimensionality of omic data provides a challenge
for visual analytics. Several dimensionality-reduction approaches
are available to map data points into a lower-dimensional space
while maintaining single-cell resolution. Methods such as princi-
pal component analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE) [48] can be used to visualize omic data
in different contexts. However, with technological breakthroughs
in integrative, multi-omic association analysis, new distributed
high-dimensional techniques are needed to keep pace with the
unforeseen scaling of the cell-subpopulation features. Our pro-
posed big-data infrastructure represents a timely advance and it
provides an ideal opportunity to develop such analysis methods
with unprecedented resolution. BioCyBig aims to couple algo-
rithmic innovations with responsive big-data ecosystem leading
to self-contained, dynamic computational models—this approach
tends to resolve one of the biggest challenges in genomic-
association studies [6].
CanLib: In addition to addressing the high dimensionality prob-
lem, CanLib must also utilize scalable machine-learning tech-

niques that take into consideration the very small number of
samples compared to the number of parameters. The most com-
mon solution to this problem is to select a subset of important
explanatory variables, where the subset selection is the key of
such a problem. According to [38], penalized regression allows us
to accomplish this goal in a stable and computationally efficient
fashion. The following multivariate model (SNP+CpG) is used:
Gene expressioni = α1SNP1+α2SNP2+...+α1CpG1+α2CpG2+
...; i = 1...m. The symbol m represents the number of gene
probes.

To apply integrative analysis, the following steps are per-
formed recursively: (1) microfluidic nodes start to perform gene-
expression analysis on specified probes where a 1 MB window
of SNPs and CpGs are selected from each probe; (2) the above
model is modified accordingly, and penalized regression is ap-
plied to each probe and model, thereby providing the deviance
per model‡; (3) the significance of gene probes is tested and used
to guide the next iteration of probe selection. In the subsequent
iterations, the window size of SNPs and CpGs is increased and
only the significant probes are re-examined to update the model.
This approach expands the model horizontally.

The above discussion demonstrates that cyberphysical inte-
gration and the associated big-data infrastructure offer powerful
means to study the diversity and evolution of single cancer cells,
which can ultimately be applied to the clinic from an early
detection stage to identifying therapeutic strategies for cancer
patients.
5.2 Gamification for Improving System Productivity
Improving system productivity and promoting client participa-
tion are key requirements that can play a critical role in enhancing
the precision of model learning and ultimately cancer diagnosis.
Therefore, inspired by Games in Health [55], the incorporation of
game-design elements and strategies into the cloud side will lead
to the establishment of models that will act as a key player in
decision making. The cloud software needs to include the game
components that will motivate the researchers/clients to gather
more omic data and daily make reasonable decisions influencing
positively the scope of analysis and cancer diagnosis. Gamifi-
cation creates the atmosphere where more microfluidic experts
become eager to participate with their experimental outcomes.
As a result, a gamification software architecture (Fig. 9) must be
considered as a major building block in BioCyBig.

There are several challenges that need to be addressed as part
of this design aspect, as listed below:
Reward scheme: It is required to design a game where the
participating users (e.g., microbiologists) are awarded based on
their experimental effort, as a form of incentives. The reward
scheme may be intellectual-based such as recognition in terms of
academic publications and awards, or monetary-based in terms
of commercialization. Automated social/academic network in-
volvement can be used to share participants’ achievements.
Mechanism design: It is needed to design the rules of the
game—that can for example be taken from the principles of
microeconomics to achieve fairness and efficiency among partic-
ipants [56]. Features such as Pareto efficiency, envy-freeness, and
sharing incentives will be potential characteristics in this game.
For example, the problem of incentivizing effort and rewarding
in online systems based on user contributions has evolved from

‡. Deviance is often used in conjunction with regression to quantify the
quality of fit for a model.
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Fig. 9: Proposed gamification architecture to encourage user pro-
gression and improve service productivity.

the economics literature on “tournaments” [57]. Tournaments, as
a broad class of game-theoretic mechanisms, are used for diverse
purposes such as choosing winners in sporting events, procuring
innovations, or rewarding workers. Our innovation lies in the
application of these tournaments in the cyberphysical microflu-
idics domain, where the players are biochemists/microbiologists
utilizing microfluidics.
Game coordination and analytics: A secure and trusted software
party/agent needs to be developed to coordinate/manage the
game and control participants’ promotion. It is necessary to in-
vestigate a game-theoretic approach for communication security
(or cyber-security) to guarantee system integrity and authentic-
ity. As a first step, potential cyber-attacks need to be explored
and the actions of attackers and defenders are studied. Second,
behavioral game theory can be utilized to investigate the role
of certain actions taken by both parties in a set of simulated
scenarios [58]. Third, reinforcement learning is used to represent
a simulated attacker and a defender in cyber-security game.
Such a methodology will provide us with insights about efficient
techniques for ensuring cyber-security. Finally, as a part of game
coordination, gamification analytics needs to be applied to our
genomic analysis system.

5.3 Development of Visual Analytics and Decision Making

These tools have two main functionalities: (1) applying analytics
methods to the obtained models in order to initiate automated
decision making; (2) enabling users/participants to visualize and
extract knowledge from the models to aid in decision making.
Seaborn visualization dashboards will be adapted to be highly
programmable so that they can fit different use cases. These
dynamic dashboards will allow users to monitor the progression
of experimental work and make protocol decisions based on their
own perspective. A key challenge that needs to be addressed in
this context is as follows:
Decision-making models: Decision-support systems (DSS) are
used in many applications [59], and they rely on knowledge-
based reasoning systems (KBS); thus KBS is adopted in BioCyBig,
as shown in Fig. 10. The knowledge base will be constructed
and iteratively trained (with online machine learning methods) to
support decisions about protocol implementation and selection of
microfluidic platforms.

Fig. 10: Components of a decision-support system.

The knowledge base can be encoded as IF-THEN, for example
based on specific microfluidic technology, or it may incorporate
heuristics or probabilities, for example when algorithmic parti-
tioning of deep sequencing protocols among multiple platforms
is considered. The knowledge base will be mainly stored and
handled via Spark. Note that these models will run in conjunction
with the designed game described above; such a pairing needs to
be investigated. In other words, we are interested in investigating
the influence of a decision-support mechanism on a tournament.
The inference engine (or reasoning mechanism), in turn, can
be developed using known concepts from artificial intelligence.
It will be designed such that it receives description/analysis
findings from the middleware and it may request additional
information from the system user if needed. The engine will
interpret the knowledge base, draw conclusions, and ultimately
make decisions about protocols. In order to apply the inference
engine in our setting, a backward-chaining inference methodol-
ogy needs to be developed [60]—this methodology is applicable
for diagnostic problems since it is a goal-directed inference, i.e.,
inferences about protocols or microfluidic facilities are not carried
out until the system is able to reach a particular goal (e.g.,
execute certain protocols on specific types of cells). Fig. 10 shows
an example of a cyberphysical, computer-aided decision-making
scenario.
CanLib Visual Analytics: Recall that cyberphysical adaptation
expands the CanLib model horizontally by re-examining the
influence of transcription factors on gene probes. However, to
reach a meaningful conclusion, the previous gene-expression
study must be performed on different cell types, wherein cells
vary based on the activity of the transcription factors. Therefore,
considering multiple cell types in the study expands the CanLib
model vertically. With this expansion, a user can view clustering
of cells and transcriptional factors based on the level of gene
expression [61]. As shown in Fig. 11(a), gene-expression analysis,
obtained from multiple cell types over a specific window of
transcription factors, suggests that there are two major classes of
cells: C1 and C2. Based on Fig. 11(a), a system user/administrator
can infer the following: (i) analysis over a subset of C1 cells is
sufficient to predict the overall behaviour of C1 cells; (ii) unlike
C2 cells,C1 cells hypothetically exhibit gene-expression activity at
the north extension of transcription factors. As a result, a decision
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Fig. 11: Visual analytics for CanLib [61]. (a) Hierarchical clustering
of cells showing the correlation between gene-expression analysis
and transcription factors. (b) A synthesized Boolean network
model of transcription factors illustrating the interaction between
these factors (i.e., activation and repression).

can be made to extend the association analysis for a subset of C1

by expanding the window towards the north direction.
Similarly, the synthesis of a regulatory network of transcrip-

tion factors for CanLib allows researchers to infer the influence
chain of each factor; see Fig. 11(b). Graph-theoretical algorithms
such as finding cycles of nodes can also be used to narrow down
the analysis scope.

6 DESIGN OF MICROFLUIDICS FOR GENOMIC ASSOCI-
ATION STUDIES

Support for diverse microfluidic technologies is an important de-
sign characteristic that must be considered. Therefore, a universal
control interface connected with the distributed-system software
(middleware) is needed. Such an interface will enable tracing
the outcomes of individual biochemical pathways and also the
delivery of synthesis specifications in a technology-independent
manner. Customization to specific technology, if needed, will be
carried out using an “adapter” system. Fig. 12 depicts the main
components of the microfluidic control and sensing interfaces.

6.1 Design of Microfluidic Control and Sensing Interface
A well-defined interface will be constructed to enable tracing
and logging of experimental data. Control plans will also be
conveyed through a technology-independent host controller. This
level of abstraction will achieve horizontal scalability, since it can
be employed at any microfluidic system. The following are some
challenges that we need to consider:
Microfluidic System Model Composition: From the control per-
spective, our solution follows a model-verification approach at
every microfluidic node to verify whether the required control
decisions can be fulfilled given the advertised node model, which
embeds information related to available reagents, fault-tolerance
threshold, timing specifications, and others (see Fig. 12). Every

Fig. 12: Adaptation of microfluidic platforms (clients) for
BioCyBig-compliance.

participant (or researcher) will declare a unified model for the
microfluidic systems they possess. Such a model will incorporate,
for example, the types of tissues they work on, microfluidic tech-
nologies, and corresponding reagents, and many other features.
Thus, a tool is built to turn the expert specifications into a file
format that is compliant with a model-checker tool. Note that at
this level, the details of the biochemical procedures are not known
yet. Therefore, model verification is considered as a first step in
the communication protocol between the cloud infrastructure and
the underlying microfluidic systems.
Reporting: From the sensing/tracing perspective, the solution
uses a reporting engine to aggregate all the details of the experi-
mental outcomes. This data is then used by logging tools.

6.2 Omics-Driven Biochip Synthesis and Firmware

Breakthroughs in microfluidics technologies have allowed the
realization of high-throughput single-cell genomic studies. The
massive amount of data generated by these platforms allows
mapping of complex heterogeneous tissues and most likely
uncovers previously unrecognized cell types and states. The
communication established between thousands of microfluidic
biochips and the cloud infrastructure will interactively make use
of this data. However, for automated, high-throughput, cost-
effective execution of single-cell tests (e.g., deep DNA sequenc-
ing) using microfluidic biochips, there are several design and
algorithmic challenges that need to be tackled first:
Scalable Protocol-DNA Co-Modeling: Recently, a graph-
theoretic modeling approach for quantitative-analysis protocols
has been presented [29]. While this modeling approach is capable
of capturing the characteristics of a wide class of protocols (i.e.,
support for multiple sample pathways and sample-dependent
decision making), the introduction of single-cell analysis cre-
ates new challenges (opportunities) for protocol modeling. More
specifically, since a sample droplet encapsulates an individual
cell, there is need to rethink protocol modeling to combine the
representation of fluid-handling operations (e.g., mixing and
heating) with modeling information about a particular DNA
(or protein) and its associated omic data. A portion of such a
protocol-DNA co-model will be specified statically, considering
all possible interactions (the worst-case), while the other por-
tion will evolve dynamically and it will guide the biochip-level
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Fig. 13: Illustration of a sequencing-network model and protocol-
dynamics representation.

decision-making process to prune the search space of interac-
tions. We call such a co-model a sequencing network, where
the sequence of interactions progresses like broadcasting packets
in a network. Fig. 13 shows how such a sequencing network,
along with cyberphysical integration, efficiently guides biochip-
level progress, on a very small scale. Execution of progression
is performed through a staged synthesis framework, which is
outlined below. In the course of our recent work, we realized
that this model fits the requirement of many single-cell genomic-
association protocols such as chromatin immunoprecipitation
(ChIP) that aims to investigate DNA-protein interactions [30].
Sequencing Depth vs. Number of Droplets/Cells [Staged or
Sequencing-Driven Synthesis]: Given the above protocol model
as input, we propose to develop a technology-specific synthesis
framework, where the progression of fluid-handling operations
within the sequencing network is not known a priori. One of the
challenging questions in next-generation sequencing associated
with single-cell analysis is whether it is possible to predict the
amount of sequencing that is required, both to answer a biological
question and, at the same time, to prevent excessive sequencing.
Fig. 14 illustrates the tradeoff between the number of cells (or
replicates) required and sufficient (saturated) sequencing. Current
approaches are offline; i.e., they rely on statistical analysis at the
design stage. Therefore, the first problem to be handled with
our framework is how CPS can enable biochip-level decision
making to iteratively determine the extent of sequencing. In this
case, biochip detection is applied at every step in the sequencing
network. Since multiple droplets (or pathways) are involved
in the protocol, the synthesis framework must consider multi-
sample decision making, as presented in [29], [30]. In conclusion,
our synthesis framework will combine cyberphysical control of
reaction (sequencing) termination with multi-sample decision
making.

The second problem arises when cell clustering and lineage
network applications at the cloud layer come into play. Based on
online models, a cloud-level decision making will be communi-
cated to the biochip; the objective is to carry out deep sequencing
up to a pre-determined limit. The design will aim to traverse
the minimum set of fluid-handling operations to achieve the
specified goal in a statistical fashion. As a first step, optimization
techniques based on network-flow algorithms can be investigated
to solve this problem.
Barcoding-Aware Synthesis and Firmware Design: Since thou-

Fig. 14: Motivation for staged sequencing to predict sequencing
requirements.

sands of cells can be involved in one experimental run in genomic
association analysis, researchers have recently developed a high-
throughput droplet-microfluidic approach for barcoding the RNA
from thousands of individual cells for subsequent analysis by
next-generation sequencing [62]. With such data, we can track
heterogeneous cell sub-populations, and infer regulatory relation-
ships between genes and pathways.

While this method provides an innovative solution to the chal-
lenging problem of cell heterogeneity and its dynamics during
early differentiation, random barcoding does not allow individual
cell identities (marked by gene-expression, lineage, or location)
to be associated with a given barcode. In this case, sequencing
efforts (to identify de novo barcoded cells) are either completely
ad hoc or exhaustive, leading to extremely high completion time.
Therefore, it is necessary to implement a barcoding strategy that
facilitates sequencing and cell analysis at a later stage; such
strategy must be incorporated in the synthesis engine and it
can dynamically change the ordering of dispensed droplets ac-
cordingly. This requires appropriate reservoir/port management
facility associated with microfluidic biochips. A firmware layer is
also required to collect and analyze sequencing information, and
to guide the next steps in the protocol.

The input to barcoding-aware synthesis will be a sequencing
network and a barcoding library that represents the barcoded
hydrogels. The library may contain hundreds of hydrogel bar-
codes, pipetted in separate reservoirs. This implies the following
constraints: (1) A single port may be time-multiplexed among
multiple reservoirs; (2) A multi-reservoir pressure modulator is
used to control pressures at multiple reservoirs. It is obvious
that such an architectural configuration may lead to significant
time overhead despite being scalable and cost-effective. Our goal
is to leverage this architecture, but develop a new synthesis
framework (we call it barcoding-aware synthesis) that takes into
account the following characteristics:
• Barcoding specifications must be fulfilled. For example, if

cell differentiation is based on the gene-expression level for a
gene (high, medium, and low), then we will assign a unique
barcode for the cells in each category. With fine-grained gene-
expression discretization and with the need to consider hun-
dreds of genes simultaneously, barcoding becomes extremely
complicated.

• Completion time must be minimized. This requires a synthe-
sis solution for fluid handling, where multi-reservoir pres-
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Fig. 15: Motivation for barcoding-aware synthesis.

sure modulators are efficiently utilized. It is impractical to
design a pressure modulator for each reservoir; the biochip
may contain hundreds of reservoirs to cover a wide spectrum
of barcodes. Fig. 15 illustrates the motivation for barcoding-
aware synthesis.

7 DISTRIBUTED-SYSTEM INTERFACING AND INTEGRA-
TION

The distributed-system (middleware) software will handle in-
coming and outgoing data streams between the microfluidic de-
vices and the cloud, ideally in a real-time fashion. Developing the
middleware stack is a big-data design problem for which similar
solutions have been engineered in the past [63]. Nevertheless,
this stack is important for our system and must be adopted
to integrate, test, and evaluate our MaaS solution. Open-source
tools, specifically Apache Spark and Cassandra, can be used for
database management and analytics realization. The objective
is to investigate an efficient method for data structuring with
Cassandra.

7.1 Deploying Spark on Cassandra
Apache Cassandra is a masterless, NoSQL online database archi-
tecture with no single point of failure (i.e., fault tolerant). Apache
Spark is a centralized scheme that designed to handle a large
amount of data by simultaneously processing it at scale. For
example, to develop scalable regression models for CanLib, Spark
Machine Learning Library (MLlib) can be deployed and used. In
BioCyBig, we tightly integrate Spark and Cassandra, which gives
us the capability to use Spark to analyze the data stored at Cassan-
dra; this data is generated online by the individual microfluidic
platforms that may be geographically distributed. This integra-
tion provides horizontal scaling, fault tolerance, operational-level
reporting, and analytics-friendly environment, all in one pack-
age. To achieve this integration, we will study how to extract
biochemical outcomes from Cassandra and incrementally move
the updates to Spark in a real-time fashion, with an online guide
as a start [64].

7.2 Data Structuring and Storage in Cassandra for Real-
Time Transactions
The Cassandra data model is schema-optional and column-
oriented. This means that, unlike for a relational database, we do

not need to model all of the columns required by the application
upfront, as each row is not required to have the same set of
columns. The primary language for communicating with the
Cassandra database is the Cassandra Query Language (CQL).
As a first step, we study how the Cassandra data model can be
leveraged to store experimental reports driven by microfluidic
nodes. Second, we use Cassandra APIs to write, read, and tune
data replication (for consistency), via CQL. Node and cluster
configurations are also an important part of our design. Our
main challenge lies in the fact that biochemical reports must be
structured and prepared such that real-time data writing and
reading across Cassandra (via CQL) can be performed.
Integration and Evaluation: The above components need to be
integrated to evaluate BioCyBig. For evaluation, publicly avail-
able information about microfluidic protocols and single-cell data
can be used. Examples include a rich set of high-throughput
functional genomic data a from the Bioconductor project [52].
Framework scalability can be assessed by tuning the number
of microfluidic devices, labs, and users. It is required to sys-
tematically consider a range of simultaneous users and devices
(e.g., in the range of tens to thousands). The responsiveness
of BioCyBig can be evaluated against varying frequencies of
adaptation requests.

8 CONCLUSION

We presented our vision for a microfluidic-driven framework,
referred to as BioCyBig, that enables the interpretation of genomic
sequences and how DNA mutations, expression changes, or
other molecular measurements relate to disease, development,
behaviour, or evolution. We illustrated the system components
and their functionalities, and we explained, through a case study,
how the integration of biological domain expertise, large-scale
computational techniques, and a computing infrastructure can
support flexible and dynamic queries and system adaption to
search for patterns of genomic association over large collections
of omic data.

The knowledge gained from applying molecular biology pro-
tocols to software-controlled biochips in large-scale and dis-
tributed experiments will be a big step forward towards person-
alized medicine. Such a cloud-infrastructure based on CPS and
MaaS will advance our understanding of a variety of diseases,
including cancer. The advances proposed in this paper will be
applicable to a range of quantitative analysis protocols, such as
gene-expression and immunological analysis.

Although this framework was originally envisioned and de-
signed for scalable genomic and cancer research, the layered
design methodology of our framework can be leveraged for
other CPS areas; especially in smart city domains. For example,
coupling big data analytics with cyberphysical adaptation enables
management of sustainable mobility and traffic control in a smart
city. In this setting, the application layer can be used for traffic
data fusion, adaptive traffic-light control, and coordination of
driverless transportation buses. The middleware layer, in turn,
collects sensor data for traffic and weather conditions. This appli-
cation and several others can be seamlessly deployed using our
framework.
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