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ABSTRACT  |  Digital microfluidics is transforming microbiology 

research by providing new opportunities for high-throughput 

sample preparation and point-of-care diagnostics. Over the past 

decade, several design-automation (synthesis) techniques have 

been developed for on-chip droplet manipulation. However, 

these methods oversimplify the dynamics of biomolecular 

protocols and they have yet to make a significant impact in 

biochemistry/microbiology research, leading to a large gap 

between advances in biochip design and the adoption of 

biochips for running biomolecular protocols. In this paper, 

we bridge this gap by introducing a new paradigm for biochip 

design automation. By exploiting advances in the integration of 

sensing systems into a digital-microfluidic biochip, we present 

a number of synthesis solutions that use realistic models of 

biomolecular protocols to address real-world microbiology 

applications through cyber�physical adaptation. This paper also 

details a vision for continued research on design-automation and 

optimization methodologies for the realization of biomolecular 

protocols using microfluidic biochips.

KEYWORDS  |  Biochip; biomolecular; cyber�physical; gene-

expression analysis; lab-on-chip; microfluidics; synthesis

I .   IN TRODUCTION

Microfluidics technology has tremendous potential to 
advance subject areas ranging from drug discovery to clini-
cal diagnostics through the use of miniaturized devices for 
biomolecular recognition [1], [2]. The microfluidic industry 
is now poised to become mainstream as the microfluidic 

devices market is forecast to grow from $2.56 billion in 
2015 to $5.95 billion in 2020 [3]. The rapid evolution of 
lab-on-chip technologies opens up new opportunities for 
point-of-care (POC) applications, including clinical diag-
nostics [4] and electrochemistry [5].

An early generation of microfluidic devices, referred 
to as continuous-flow microfluidic biochips (CMFs) [6], 
consists of microfabricated channels, micropumps, and 
microvalves that are permanently etched in a silicon or 
a glass substrate. Initially, CMFs relied on simple topol-
ogies and only a few channels; however, commercial 
microfluidic devices today incorporate large-scale net-
works of channels so that they can be used in implement-
ing complex tasks such as organ-on-a-chip assays [7]. For 
example, a product from Fluidigm [8], a biotechnology 
company that produces CMFs, can perform a series of 
gene analyses steps, including enrichment for a tar-
get DNA sequence, sample barcoding, for multiplexed 
sequencing, and preparation of the sequencing library. 
While CMFs are highly efficient and robust in the minia-
turization and high-throughput execution of biochemical 
assays, the structure and the functionality of such devices 
are tightly coupled. As a result, each biochip is only appli-
cable to a narrow class of applications, and the reconfigur-
ability of this early technology is quite limited.

Recent research has focused on making traditional CMF 
designs more flexible by using valve-based reconfigurable 
components. For example, Silva et al. [9] introduced a 
programmable flow-based primitive, called a transposer, 
that can be scaled to create a field-programmable flow-
based fabric. Also, a software-programmable microchan-
nel structure has been introduced in [10], which allows 
a software program to control numerous valves by using 
microfluidic multiplexer circuitry. Similarly, in [11], 
Kim et al. presented a design of field-programmable 
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flow-based devices, called programmable microfluidic  
platforms (PMPs). In these devices, fluid can be flexibly 
manipulated using a 2-D array of valves that can act as both 
flow-switching elements and reaction chambers. A variety of 
biochemical applications such as immunoassays and genetic 
analysis have been implemented using these reconfigurable 
devices. Fig. 1 shows three examples of field-programmable 
CMFs. These reconfigurable devices have recently attracted 
researchers to develop design-automation and testing solu-
tions, thus leveraging the flexibility and programmability 
provided by these devices [12]–[14].

Despite the advances in field-programmable CMFs, they 
are still limited in their scalability with respect to valve con-
trol and their ability to support both multiple sample path-
ways and real-time decision making; such characteristics are 
inherent in today’s biochemical applications. In contrast, a 
digital microfluidic biochip (DMFB) is a reconfigurable lab-
on-a-chip technology that has achieved remarkable success 
in enabling miniaturized analysis systems for several bio-
chemical applications. Motivated by the precision and cost 
reduction offered by digital microfluidics (DMF), Illumina, 
a market leader in DNA sequencing, has recently developed 
DMFBs for high-quality DNA-library preparation [15]. This 
technology has also been deployed by GenMark for infec-
tious disease testing [16] and by Baebies for the detection 
of lysosomal enzymes in newborns [17]. These significant 
milestones indicate the impressive growth of the digital-
microfluidics market and the promising miniaturization 
capabilities offered by this technology for immunoassays for 
POC diagnosis [18], [19], DNA sequencing [20], and envi-
ronmental monitoring [21]. A typical DMFB consists of a 2-D 
electrode array, on-chip reservoirs, optical sensors, and heat-
ers, as shown in Fig. 2(a). A cell in a DMFB consists of two 
parallel plates; see Fig. 2(b). The electrode surface is coated 
with a thin layer of an insulator such as Paralyene [18]. Both 
plates are also coated with a thin film to provide a hydro-
phobic platform that is necessary for smooth electrowetting-
based droplet actuation [22]. The gap between the top and 
bottom plates is usually filled with silicon oil, which acts as 
a filler medium to prevent surface contamination. When 
an electric field ​V​ is applied between the parallel plates  
of a DMFB, the interfacial surface energies are modulated 
and an electrical double layer is created, which in turn 
alters the apparent contact angle ​θ (V)​ of a conductive liquid 

droplet that is in contact with the hydrophobic surface 
[Fig. 2(b)]. The change in the contact angle, in turn, influ-
ences the wetting behavior of the droplet. This phenomenon 
is known as electrowetting-on-dielectric (EWOD), and it 
can be modeled using the Lippmann–Young equation [22]

	​ cos (θ (V))  =  cos (θ (0)) + ​ 
​ϵ​0​​ ​ϵ​r​​ ​V​​ 2​

 _____ 2d​γ​ LG​​ ​​�  (1)

where ​​γ​ LG​​​ is the liquid–gas interfacial tension, ​​ϵ​0​​​ is the 
permittivity of vacuum, ​​ϵ​r​​​ is the permittivity of the bottom 
insulator, and ​d​ is its thickness.

Hence, DMFBs allow biochemical assays to be carried 
out in a miniaturized form, where picoliter volumes of fluids 
can be transported, mixed, heated, or analyzed using vari-
ous means of detection. The electrical actuation of DMFBs 
enables software control of all these fluid-handling opera-
tions in a real-time manner [23]. Benefits of miniaturiza-
tion using DMFBs include reduced reagent consumption 
and sample requirement (which is critical in POC setting), 
reduced analysis time due to the increased reaction speed, 
human-intervention-free control of droplets via design 
automation, and low risk of contamination. These benefits 
make DMFB technology an ideal alternative to conventional 
benchtop biochemical procedures [24]. Therefore, as the 
applications of DMFBs grow, greater demands are likely 
to be placed on developing a complete microfluidic solu-
tion for advanced molecular biology research. Furthermore, 
the flexibility provided by this technology for integrated 
biomolecular analysis has been supported by advances in 
integrated sensing technologies [25], magnetic bead manip-
ulation [26], on-chip thermal-cycling procedures [25], and 
DMFB-enabled electroporation techniques [27]. These 
advances enable complex bench-top biomolecular proce-
dures on programmable and cyber–physical DMFBs.

Motivated by the increasing complexity of biochemistry-
on-chip, research on design automation (or “synthesis”) for 
DMFBs has received much attention over the past decade 
[28], [29]. The goals of such design-automation methods 
are twofold: 1) nonexpert users of DMFBs (e.g., a local cli-
nician in a rural area [30]) should be able to utilize only a 
high-level specification of a protocol, e.g., a sequencing graph 
[Fig. 3(a)], to program a biochip; and 2) using information 
about DMFB-enabled devices [Fig. 3(c)] and prespecified 

Fig. 1. Examples of field-programmable CMFs. (a) A transposer-
based recondigurable CMF [9]. (b) Software-programmable array [10]. 
(c) Programmable microfluidic platform (PMP) [11]. Fig. 2. Schematic view of a DMFB. (a) A DMFB with a 2-D array of 

electrodes. (b) A side view of the DMFB.
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operation constraints [Fig. 3(b)], a well-established syn-
thesis framework must convert the abstract representation 
of a protocol into an executable code (namely actuation 
sequences) that timely actuate the electrodes of a DMFB; 
thus moving droplets to execute the associated protocol, as 
shown in Fig. 3(e). While prior synthesis methods address 
droplet manipulation on a chip for basic fluidic operations, 
they have yet to address the challenges associated with non-
trivial biology-on-chip. A key limitation of prior solutions 
for biochip synthesis is that they consider a given sequenc-
ing graph and therefore a predetermined sequence of flu-
idic operations. However, in actual biochemistry protocols, 
the actual sequence of fluidic operations is not known until 
intermediate reaction results are available [31]. Therefore, 
biochip designs based on static synthesis are unrealistic and 
today’s techniques do not exploit the potential of DMFBs for 
implementing real-life microbiology applications. By lever-
aging advances in cyber–physical integration of DMFBs, an 
effective synthesis capability can be developed to overcome 
the myriad complexities of biomolecular protocols and 
therefore bridge the gap between microfluidics and micro-
biology [7], [32].

A. Contributions of the Paper 

In this paper, we provide a comprehensive design-auto-
mation framework that can support scalable execution of 
biomolecular protocols using cyber–physical DMFBs. This 
framework addresses design-automation challenges arising 
from mapping realistic implementation of quantitative-
analysis protocols to the chip scale; such mapping is guided 
by our recent experience with benchtop experiments from 
the epigenetics domain [31].

Motivated by our benchtop study, we first pinpoint 
the main characteristics of quantitative-analysis protocols, 
whereby these characteristics can be incorporated into the 
algorithms underlying the design-automation flow. 

1) � Multipathway experimentation with real-time deci-
sion making: Quantitative results are reported 
numerically and are compared against an accompa-
nying reference for interpretation.1 For this purpose, 
multiple samples are treated through independent 
pathways. Furthermore, decision-making and cyber–
physical adaptation capability is needed to overcome 
the inherent uncertainty about the order of basic flu-
idic steps for each sample.

2) � Biomolecular analysis under temporal constraints: 
Temporal constraints may arise during proto-
col execution due to physical phenomena such as 
droplet evaporation or deadlines imposed by the 
target chemistry, e.g., degradation of samples and 
reagents [33].

3) � Differentiation and high-throughput analysis of bio-
logical samples: With the emergence of POC micro-
fluidic platforms for single-cell analysis [34], new 
techniques are needed to efficiently classify cells and 
conduct biochemical experiments on multiple cell 
types concurrently [35].

The realization of a digital-microfluidic platform that 
supports the above characteristics requires a new synthesis 
paradigm that is based on the realistic modeling of biomo-
lecular protocols. For example, a control-flow-aware synthe-
sis capability is needed to determine which pathway must 
be followed to achieve successful completion of a bioassay 
based upon the monitored status of the assay during run 
time. Hence, this paper is focused on: 1) a biochip archi-
tecture and optimization methods to tackle the challenges 
associated with biomolecular protocols; and 2) simulation 
and evaluation of the biochip architecture and optimiza-
tion solutions, based on realistic scenarios extracted from 
benchtop implementation of biomolecular protocols. Such 
algorithmic innovations can fill the gap between control/
monitoring in the physical space and online biochemistry-
on-chip synthesis in the cyber space, and therefore promote 
the dissemination of DMF technology in translational and 
clinical research.

B. Organization of the Paper 

The rest of this paper is organized as follows. Section II 
describes an overview of integrated sensing techniques in 
cyber–physical DMFBs and a review of previous design-
automation and optimization solutions. In Section III, we 
describe three design-automation challenges for quantita-
tive-analysis protocols. Details about the design-automation 
support and system evaluation for these challenges are pro-
vided in Sections IV–Sections VI. Finally, conclusions are 
drawn in Section VII.

1Detailed explanation of a quantitative-analysis protocol can be 
found in [32].

Fig. 3. Synthesis flow for a DMFB that processes mRNA samples. 
(a) Sequencing graph. (b) Design specification. (c) Library of DMFB 
modules. (d) Scheduled sequencing graph. (e) Droplets control 
using actuation sequences.
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II .   IN TEGR ATED SENSING A ND PR IOR 
DESIGN-AU TOM ATION SOLU TIONS

In this section, we review miniaturized sensing technolo-
gies, which enable cyber–physical integration in DMFBs. 
We also review previous design-automation methods.

A. Sensing Systems

Sensing systems on DMFBs can be used to detect a bio-
logical event or quantify the existence of a constituent bio-
chemical analyte during an analytical procedure. Examples 
of biochemical analytes are toxins in food, pollutants in air/
water, and intracellular biomolecules. Researchers have 
developed numerous integrated sensing techniques that 
are used in concert with DMFBs; these techniques can be 
classified into three main categories [36]: 1) optical detec-
tion (e.g., absorbance, fluorescence, chemiluminescence, 
and surface plasmon reasonance detection); 2) mass spec-
trometry; and 3) electrochemical detection. Fluorescence 
detection is the dominant sensing method for biomolecular 
analysis—it is widely used because the fluorescent labeling 
techniques are well established and they provide quantifica-
tion results with superior selectivity and sensitivity despite 
small sample volumes [18].

1) Fluorescence Detection: Contemporary biomolecular 
research relies extensively on analyzing amplified DNA sig-
nals in correspondence with biological events such as chro-
matin packing alteration [37]. To develop a single-chip solu-
tion that incorporates the purification and detection of DNA 
signals, a fluorescence sensor along with a fluorescent dye 
injected to the sample is used to analyze the fluorescence 
generated by the on-chip quantitative polymerase chain 
reaction (qPCR) protocol [34]. In [25], a custom-built fluo-
rescence sensor is reported for qPCR experiments.

A key advantage of fluorescence sensors is that they can 
be used to visualize multiple fluorescent molecules by sim-
ply adjusting the excitation and emission filters to detect the 
fluorophores in a sample—this feature enables multiplex 
genomic analysis even with multiple samples.

2) Lensless Sensing: Although optical microscopy provides 
high-resolution imaging of biomolecular samples, it relies on 
high-magnification and high-numerical-aperture lenses. A 
new trend has recently emerged to design lensless micros-
copy that can provide high-resolution images without the use 
of any focusing lenses, offering cost-effectiveness and port-
ability features [38], [39]. Such techniques can be easily used 
to detect and monitor cells, and they can be widely utilized in 
the early phases of quantitative-analysis workflow.

B. Design-Automation Methods

Design-automation research for DMFBs has become 
increasingly important over the past decade. Initially, a 
top-down design methodology was introduced, allowing 

researchers to work on three different levels of synthesis: archi-
tectural level, physical level, and chip level [40]. Architectural-
level synthesis focused on scheduling and resource binding of 
biochemical operations [41]–[43]. In physical-level synthesis, 
methods have been developed for on-chip droplet routing 
and cross-contamination avoidance while routing [44]–[47], 
whereas chip-level synthesis included mapping of control 
pins to electrodes and pin-count minimization [48], [49].

Despite the advances brought by these methods [50], 
they are only limited to a simple setting where the sequence 
of biochemical operations is specified in advance. Therefore, 
these early methods cannot support bioassay uncertainties, 
which may arise due to error occurrences or conditional 
sample processing that is typical for biomolecular protocols. 
In other words, support for cyber–physical system design 
was not considered in these early methods, and they ignored 
the interplay between hardware and software in the DMFB.

Several on-chip sensing techniques have been devel-
oped, providing an opportunity for designing cyber–physical 
microfluidic biochip [51]. In such a biochip, the physical 
space is formed by the sensor connectivity, which ensures 
real-time detection of bioassay droplets. The cyber space, on 
the other hand, is represented by online control software that 
captures the detection outcome, received from the physical 
space, and enforces a suitable action through biochip actua-
tors. Design and optimization techniques for cyber–physical 
DMFBs have considered error recovery [51]–[55] and termi-
nation control of a biochemical procedure such as PCR [56].

A drawback of these cyber–physical designs is that they 
do not support real-time decision making for biomolecular 
protocols. In such protocols, multiple samples are involved in 
biochemical reactions, with each sample pathway being inde-
pendent of the others. For example, in [57], Gao et al. devel-
oped a complex control mechanism that can be used for droplet 
volume measurement and position control on the chip array. 
However, due to design complexity, the control of multiple 
droplets using this mechanism is impractical. Similarly, in [58], 
a hardware-based cyber–physical framework has been designed 
to support error recovery in DMFBs. This framework provides 
a practical demonstration for reliable bioassay execution, but it 
lacks support for real-time biomolecular measurement.

Therefore, a major limitation of all previous work on 
design automation and cyber–physical system integration 
is that they only address challenges associated with simple 
droplet manipulation on a biochip. Hence, a new design 
methodology is necessary to transition DMFBs towards real-
istic implementation of actual biomolecular protocols.

III .   DESIGN-AU TOM ATION 
METHODOLOGY FOR QUA N TITATI V E 
A NA LYSIS

An experimental framework for quantitative-analysis studies 
must be designed with the following key objectives in mind.
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1) � An experimental framework needs to be optimized 
to utilize the smallest amount of samples to obtain 
answers to questions in biology with the highest pos-
sible precision. An example of this challenge is the 
realization of the ChIP-seq protocol, wherein the 
reduction of the number of cells is needed to ensure 
that ChIP-seq can be widely adopted [59]. However, 
since sample reduction in turn entails a significant 
decrease in the precision of reported DNA-protein 
bindings (i.e., sequencing coverage), co-optimization 
of framework design and sequencing coverage 
is essential.

2) � From a biology perspective, an experimental frame-
work is developed for one of two objectives: a) iden-
tification of biomolecules—also known as upstream 
analysis—that exhibit specific or abnormal biological 
behaviour (e.g., fluorescence-based gene expression/ 
suppression due to enzymatic reaction); and b) caus-
ative exploration of biomolecules—also known as 
downstream analysis—that contribute to the in vivo 
interactions leading to such biological behaviour 
(e.g., the impact of protein binding to DNA at spe-
cific genomic regions). Such causative exploration 
requires a method for indexing/barcoding samples at 
the end of up-stream analysis to account for cellular 
heterogeneity [60].

As a result, the workflow of biomolecular analysis 
that needs to be adopted consists of three main stages: 
specification-driven experiment design, sample labeling and 
differentiation, and multisample experimentation, as shown 
in Fig. 4. The first stage, i.e., experimental design, is carried 
out before experimentation and it seeks co-optimization of 
experiment goals (e.g., amount of input sample, resource, 
and sequencing coverage) [61]. A  decision at this stage 
impacts the protocol procedure. The second stage, i.e., sam-
ple labeling and differentiation, is focused on developing 
scalable methods for differentiation of heterogeneous sam-
ples within downstream analysis [62]. The third stage, i.e., 
multisample experimentation, represents the implementa-
tion of protocol procedures using multiple sample pathways 
in order to obtain quantitative results; this stage applies to 
both upstream and downstream analyses. In this paper, we 

focus only on the design-automation challenges associated 
with the second and third stages.

1) Independent sample Pathways, Online Decision Making, 
and Quantification of Results: Quantitative results are reported 
numerically and are compared against an accompanying 
reference interval for interpretation. For this purpose, mul-
tiple samples are treated through independent sample path-
ways. Subsequently, the distributed detection results of the 
sample pathways are collected and fused to report a final 
quantitative result. Therefore, to support multiple sample 
pathways, it is necessary to extend the traditional sequenc-
ing graph model [see Fig. 3(a)] to represent the associated 
bioassay protocols for all samples. Note that the procedures 
associated with these protocols can either be identical for all 
samples or be unique to each sample type according to the 
application specifications. This modeling technique is similar 
to the multifunctional design scheme presented in [63], which 
combines a set of multiplexed bioassay protocols in the same 
platform. Our solution, however, executes the bioassay proto-
cols concurrently and collects detection results from all these 
protocols (using firmware) to reach a meaningful conclusion.

Another important feature of quantitative-analysis pro-
tocols, such as epigenetic protocols, is the inherent uncer-
tainty about the sequence of fluidic steps for each sample. 
In other words, based on our recent benchtop experience 
with multiple sample pathways, it is necessary to incorporate 
decision-making capability into our microfluidic framework. 
For example, nucleic-acid isolation during the execution of 
qPCR-based gene-expression analysis must be followed with a 
decision on whether the quality of the isolated NA allows sub-
sequent cDNA synthesis or requires further steps to get rid of 
the residual protein and debris—such “if-then-else” reconfig-
uration can be performed either automatically using cyber–
physical integration or using human-in-the-loop if necessary.

2) Support for Temporal Constraints: Temporal constraints 
may arise during protocol execution due to physical phe-
nomena such as droplet evaporation or deadlines imposed 
by the target chemistry, e.g., degradation of samples and 
reagents  [33]. Therefore, we need to provide a systematic 
approach that handles such constraints during the course of 
an experiment in order to ensure robust and reproducible 
quantitative results. An example of an upper-bound temporal 
constraint can be seen in ChIP protocol, in which the protein 
is initially cross-linked to DNA. It has been shown that an 
excessively long cross-linking time results in the majority of 
chromatin being resistant to shearing, thus degrading chroma-
tin shearing process [64]. Therefore, an upper-bound tempo-
ral constraint on cross-linking reactions must be specified; this 
temporal constraint is often dependent on the sample type.

3) Support for Indexing/Labeling Samples: Microfluidic 
solutions have been developed to classify cell types (using 
cell sorting) or perform biochemical analysis at the cell 
level on preisolated types of cells [65]. With the emergence 

Fig. 4. The workflow of biomolecular quantitative analysis and the 
associated design-automation challenges.
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of POC microfluidic platforms for single-cell analysis, new 
techniques are needed to efficiently classify cells and con-
duct biochemical experiments on multiple cell types con-
currently. System integration and design automation are 
major challenges in this context. To enable such an inte-
grated system, it is necessary to develop a microfluidic plat-
form and a design-automation framework that combine the 
following steps of the single-cell experimental flow: a) cell 
encapsulation and differentiation; b) sample-indexing (bar-
coding) to keep track of the samples identity; and c) type-
driven biochemical analysis.

We discuss design-automation solutions associated with 
the above challenges in Sections IV–VI, respectively. Real-
world microbiology applications are used to motivate these 
solutions.

I V.   SY N THESIS FOR MU LTIPLE 
SA MPLE PATH WAYS:  R E A LI Z ATION 
OF R E A L-TIME GENE-E X PR ESSION 
A NA LYSIS

In this section, we present a design and optimization 
framework to control multiple sample pathways in quan-
titative-analysis protocols. This basic solution can be used 
to solve the synthesis problem for downstream protocols, 
which use samples that were processed and differentiated 
at an earlier stage; see Fig. 4. The integration of this frame-
work with a sample-differentiation utility is introduced 
in Section VI.

We describe an algorithmic model for a protocol that 
studies the gene-expression levels in molecular biology [31]. 
The design-automation framework adopts a physical-aware 
reconfiguration scheme to coordinate resource sharing 
among multiple sample pathways. Resource-sharing con-
straints are incorporated into the design-automation flow to 
ensure reliable execution of gene-expression analysis.

This solution is not only applicable to the gene-
expression analysis protocol, but it is also amenable to other 
forms of biological quantification such as concentration 
(e.g., in glucose testing) [66]. Gene-expression analysis is 
considered as an example in this section due to its wide-
spread use in biomolecular analysis.

A. Miniaturization of Gene-Expression Analysis

We leveraged our recent benchtop experience with 
the study of gene-expression analysis to pinpoint the key 
characteristics of a sample pathway [31]. As shown in 
Fig. 5(a) [67], benchtop realization of biomolecular analy-
sis involves situations where a sample droplet can be pro-
cessed in an unpredictable manner by various biochemical 
reactions, e.g., cell lysis, and therefore real-time decision 
making takes place within the sample pathway. Hence, we 
have developed an enhanced and miniaturized protocol, 
shown in Fig. 5(b), where the protocol procedure includes 

the following bioassay implementations: 1) lysing of cul-
tured cells to obtain intracellular materials such as DNA 
and mRNA; 2) isolation of mRNA using magnetic beads, 
enzymes, and a washing procedure; 3) reverse transcription 
(RT) of mRNA into the corresponding complementary DNA 
(cDNA) using gene-specific RT kit; and 4) thermal cycling 
of cDNA via qPCR to amplify the target gene.

Similar to the benchtop approach, on-chip realization 
of gene-expression analysis requires the execution of this 
protocol on multiple sample droplets. Therefore, an auton-
omous DMFB for gene-expression analysis must support 
concurrent manipulation of independent samples. Using 
the decision points shown in Fig. 5(b), sample-dependent 
decision making is incorporated, via cyber–physical system 
integration, to overcome the inherent unpredictability of 
the order of bioassays. Furthermore, the specification of 
the protocol efficiency and the level of gene expression are 
included on-chip in the feedback system. Details on deter-
mining the protocol efficiency and gene-expression level 
can be found in [31].

There are major advantages of using microfluidic plat-
forms compared to benchtop (conventional) setup for 
gene-expression analysis. For example, it has been reported 
in  [68] that PCR execution using a DMFB is three times 
faster than using a conventional setting, and it also offers an 
inexpensive miniaturized form of the PCR assay. In addition, 
microfluidic platforms are versatile, portable, and amenable 
to POC use, and therefore they can be used in the hospital or 

Fig. 5. A protocol flowchart for gene-expression analysis using: 
(a) a benchtop setup; and (b) DMFBs.
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outpatient setting. Such characteristics and others motivate 
the use of microfluidics for microbiology applications such 
as gene-expression analysis.

In embedded systems, handling control dependencies 
among tasks to support physical-aware reconfiguration is 
a traditional hardware–software codesign problem that 
is modeled using conditional process graphs [69], [70]. 
Similarly, in DMFBs, reconfiguration of multiple sample 
pathways is captured using a control-flow graph (CFG) ​​
G​c​​  =  (​V​c​​, ​ E​c​​)​ that represents the biomolecular protocol. 
In this graph model, every node ​​v​c​​ ∈ ​V​c​​​ (referred to in this 
context as a supernode) represents a bioassay, e.g., mRNA 
extraction, and a directed edge ​​e​c​​(​v​c1​​, ​ v​c2​​) ∈ ​ E​c​​​ indicates a 
potential transition (i.e., decision making) path from ​​v​c1​​​ to ​​
v​c2​​​. The synthesis framework synthesizes the supernodes 
based on the decisions made during protocol execution.

We also model the fluid-handling operations corre-
sponding to a supernode ​​v​c​​​ using a directed sequencing 
graph (DAG) ​​G​s​​  =  (​V​s​​, ​E​s​​)​, where the set of nodes ​​V​s​​​ repre-
sents the types and timing of the operations, and the set of 
edges ​​E​s​​​ shows the interdependencies among these opera-
tions. Fig. 6 illustrates the representation of the protocol 
used for gene-expression analysis.

A new design-automation methodology is required 
to put this model into practical use. Our premise is that 
dynamic resource allocation and spatial reconfiguration are 
essential design-automation methods due to the following 
reasons: 1) biomolecular analysis is performed using mul-
tiple sample pathways that are manipulated concurrently 
and investigated independently; and 2) there is a need for 
a robust DMFB design, because a nonrobust design may 
lead to system failure or inaccurate quantification results. 
Hence, we adopt dynamic resource allocation on DMFB 
to handle a collection of sample pathways and use a spatial 

reconfiguration technique to enforce reliability constraints. 
Utilizing both mechanisms in a combined manner ensures 
robust miniaturization of a microbiology application on a 
resource-limited DMFB.

B. Spatial Reconfiguration

As described in Section IV-A, miniaturization of gene-
expression analysis using DMFBs is realized through con-
current manipulation of multiple sample pathways, yet the 
complete sequence of bioassay implementations for each 
pathway cannot be specified in advance. As a consequence, 
the allocation of biochip modules to protocol samples can 
only be employed via a reconfiguration technique that can 
correlate specifications of the bioassays with the available 
on-chip devices—this reconfiguration scheme is referred to 
as spatial reconfiguration.

Since multiple samples share a limited set of resources, 
the above reconfiguration scheme must consider the deg-
radation caused by a bioassay. An electrode can exhibit 
a short lifetime if it is excessively used by the protocol 
samples. Based on [71], an electrode’s lifetime, character-
ized by the threshold voltage needed for actuation, can be 
divided into three phases: reliable operation, safety mar-
gin, and breakdown. In the reliable operation phase, the 
threshold voltage remains constant. When an electrode is 
transitioned to the safety margin phase, the threshold volt-
age increases linearly. However, in the breakdown phase, 
a significant increase in the threshold voltage is required 
to transport a droplet. This increase in the electrowetting 
voltage, in turn, quickly damages the electrode as it causes 
dielectric breakdown [72].

The degradation model described above can be utilized 
to regulate resource allocation among bioassays. For this 
purpose, we analyze the completion time and the expected 
electrode degradation for the critical resources, e.g., heat-
ers, over a varying range of resource availability. Hence, we 
specify three different schemes of spatial reconfigurations to 
regulate resource allocation.

1) � Nonreconfigurable scheme: In this scheme, on-chip 
devices are allocated a priori to protocol bioassays 
[34], [71]. The realization of this scheme is straight-
forward, and it is, therefore, adopted by current 
prototypes.

2) � Restricted resource sharing: Restriction is applied 
to limit the reconfigurability of the shared devices 
among bioassays. For example, a heater can be 
shared between qPCR and cell lysis for thermal 
manipulation or sample processing, but it cannot 
be used by other bioassays to limit the degradation 
of the associated electrodes. It is apparent that this 
scheme achieves higher completion time.

3) � Unrestricted resource sharing: In this scheme, no 
restriction is imposed on resource sharing. Therefore, 
heaters cannot only be used for thermal cycling or 

Fig. 6. A CFG representation of the gene-expression analysis 
protocol for a single sample pathway [67].
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sample processing in cell lysis or qPCR, but they can 
also be used for sample processing in all bioassays to 
reduce the total completion time. A drawback of this 
scheme is that it reduces chip lifetime.

Our goal is to combine the advantages of both restricted 
resource sharing and unrestricted resource sharing, i.e., to 
achieve lower completion time and less degradation of the 
chip, in a single resource-allocation mechanism. We refer to 
this mechanism as degradation-aware resource allocation, 
and it is described next.

C. Shared-Resource Allocation

In this section, we describe the resource-allocation prob-
lem and introduce the algorithmic solution.

1) Problem Formulation: The notation used to describe 
resource allocation is listed in Table 1. The DMFB con-
sidered here is composed of three types of resources: 
a)  nonreconfigurable resources such as input and output 
ports; b)  sample-processing resources such as mixers; and 
c)  reconfigurable resources such as heaters, optical detec-
tors, and magnetic wires. The reconfigurable resources 
can be shared among the protocol’s bioassays, whereas the 
allocation of a nonreconfigurable or a samples-processing 
resource is limited to a specific bioassay. Access control to 
biochips resources is regulated as follows.

• � Each bioassay ​​b​i​​ ∈ B​ is mapped to a space of nonrecon-
figurable and sample processing modules.

• � A shared module ​r ∈ ​R​sh​​​ is essential for a bioassay ​​b​i​​​ if 
and only if the absence of ​r​ leads to a failure in execu-
tion of ​​b​i​​​. An example of this relation is the heater 
resource for a thermal-cycling bioassay.

• �� A shared module ​r ∈ ​R​sh​​​ that is granted to a bioassay ​​
b​i​​​ may not be essential for the execution of the bioas-
say, i.e., ​​r​i​​ ⊂ g​r​i​​​. Typically, this module can be used for 
sample processing.

Based on the above discussion, we introduce the prob-
lem formulation as follows.

Inputs: 1) The digital microfluidic library, which 

describes the types, locations, and operation timing of 

the on-chip modules.

2) The protocol CFG ​​G​ c​​ = {V, E}​, where ​V = {​V​ 1​​, ​V​ 2​​, …,  

​V​ m​​}​ represents the supernodes of ​m​ bioassays and ​E  = 

{(​V​ i​​, ​V​ j​​) 1 ≤ i, j ≤ m}​ signifies biological dependencies 

between all pairs of bioassays ​​b​ i​​​ and ​​b​ j​​​. A supernode 

​​V​ i​​​, in turn, encapsulates a DAG ​​G​ s​​ = {​V​ s​​, ​E​ s​​}​, where ​​V​ s​​ = 

{​V​ ​s​ 1​​​​, ​V​ ​s​ 2​​​​, …, ​V​ ​s​ n​​​​}​ represents ​n​ bioassay operations and ​​
E​ s​​ = {(​V​ ​s​ i​​​​, ​V​ ​s​ j​​​​) 1 ≤  ​s​ i​​, ​s​ j​​ ≤ n}​ represents dependencies 

between all pairs of biochemical operations ​​s​ i​​​ and ​​s​ j​​​ 
that belong to the bioassay ​​V​ s​​​.

3) The initial resource requirement for each bioas-

say ​​b​ i​​​ (i.e., the resource preferences). Moreover, the 

values of the bioassay’s completion time ​​T​ i​ 
j​​ and the deg-

radation level ​​D​ i​ 
j​​ as a function of the granted resources ​

g ​r​ j​​​ are also given.

4) The resource-allocation constraints described in 

Section IV-C2.

Output: Allocation of chip resources to the bioas-

says such that the constraints imposed on resource allo-

cation (e.g., degradation constraints) are satisfied.

2) Resource-Allocation Constraints and Algorithm: Fig.  7 
depicts the components and the sequence of actions (high-
lighted by the numbers 1–6) of the resource-allocation 
mechanism. A timewheel is utilized to keep track of 
resource utilization and it is managed by the coordinator. 
First, when a decision is made by the firmware for a cer-
tain pathway, the firmware translates this decision into a 
bioassay command that is communicated to the coordina-
tor; a global queue is used by the coordinator to store all the 
received commands. Next, when the command is ready to 
be processed, the coordinator informs the resource allocator 
agent with this command. In response, the resource alloca-
tor performs two tasks: a) it matches the preferences of the 
bioassay with the available resources; b) it enforces scheme-
specific constraints on resource allocation. Finally, a solu-
tion for resource allocation is obtained and forwarded to the 
actor, which triggers the online synthesis process.

If the resource allocator adopts restricted resource shar-
ing, then it ensures that the requesting bioassay can execute 

Table 1  Notations Used in Section IV

Fig. 7. The components of the shared-resource allocator [31].
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using shared resources that are only essential for the cor-
rectness of this bioassays; i.e., ​​r​i​​ = g​r​j​​​. Hence, the worst case 
computational complexity for allocating resources to a bio-
assay ​​b​i​​​ is ​O(|​r​i​​|)​. On the other hand, the resource allocator 
in unrestricted resource sharing allows nonessential shared 
resources to be utilized by any requesting bioassay. In this 
case, the worst case computational complexity for allocating 
resources to a bioassay ​​b​i​​​ is ​O(|​R​sh​​|)​.

By using the third scheme, namely degradation-aware 
resource allocation, the degradation level at a certain shared 
resource is instantaneously updated whenever it is being 
used to execute a bioassay. As a result, the restriction on 
sharing this particular resource can change over the course 
of protocol execution. In other words, a shared resource 
can initially be allocated to any requesting bioassay without 
restrictions. Afterwards, when the reliable operation time 
for the electrodes at this resource is exceeded, restriction 
is imposed by the resource allocator to limit the access to 
this particular resource. Note that since electrode degra-
dation is considered in resource allocation, resources are 
sorted according to their degradation level whenever a bio-
assay​​ b​i​​​ requires resource allocation. Therefore, the worst 
case computational complexity of this scheme is ​O(|​R​sh​​​|​​ 2​)​.

Motivated by the literature on real-time embedded sys-
tems [73], [74], we foresee many other research opportuni-
ties for optimizing resource allocation in DMFBs. Objectives 
such as fault tolerance and experiment-cost reduction are 
likely to be the main focus of these efforts.

D. Simulation Results

The above schemes have been developed using C++ and 
reported in [67]. The resource preferences for protocol bioas-
says were specified using offline synthesis simulations [48].

We used two biochip designs to simulate gene-expression 
analysis; these designs are labeled ​​​NR​​​ (nonreconfigurable 
chip) and ​​C​R​​​ (reconfigurable chip). For reliable dispensing 
in both designs, a specific interfacing port is used for each 
liquid. Unlike sample processing (SP) modules, reconfig-
urable modules, such as heaters (H), CCD camera region 
(CCD), detectors (OD), and magnetic devices (M), are 
located in the shared area of the reconfigurable chip, i.e., ​​C​R​​​. 
The sizes of electrode array for both ​​C​NR​​​ and ​​C​R​​​ are ​18 × 18​ 
and ​17 × 17​, respectively.

We evaluate four resource-allocation schemes: 1) nonre-
configurable scheme (NON); 2) restricted resource sharing 
(RR); 3) unrestricted resource sharing (NR); and 4) adap-
tive degradation-aware resource sharing (DA). By using the 
protocol described in Section IV-A, our evaluation is based 
on simulation scenarios where three samples are being con-
currently manipulated; these samples are as follows: ​​S​1​​​ (GFP 
gene-targeted sample), ​​S​2​​​ (YFP gene-targeted sample), and ​​
S​3​​​ (actin gene-targeted sample).

Table 2 summarizes the bioassay notation and the 
resource requirements for each bioassay. Our evaluation 
comprises three different cases in terms of the length of 

sample pathways; these simulation cases are as follows. 
1)  Short homogeneous pathways (Case I): an optimistic 
case in which all the three samples follow the same shortest 
pathway (CL-mE-mP-MM-SD-TC). 2) Long homogeneous 
pathways (Case II): a pessimistic case in which all the three 
samples follow the same long pathway (CL-mE-mP-CL-mE-
mP-MM-SD-TC). 3) Hheterogeneous pathways (Case III): 
a realistic case in which the pathways of these samples are 
different. The considered pathways are as follows: CL-mE-
mP-MM-SD-TC, CL-mE-mP-CL-mE-mP-MM-SD-TC, and 
CL-CL-mE-mP-MM-MM-SD-TC, respectively.

Comparison between the resource-allocation schemes is 
performed using two metrics: 1) protocol completion time 
(in time steps); and 2) the occupancy time for the shared 
resources (heaters and magnet modules) to report the deg-
radation level. For fair comparison between nonreconfigur-
able and resource-sharing schemes, the chip designs used 
with the nonreconfigurable scheme (i.e., ​​C​NR​​​) is designed 
such that the resources are sufficient to process only a sin-
gle pathway; therefore, the resources are not replicated with 
the number of samples. In addition, due to the absence of 
resource sharing in the nonreconfigurable scheme, the 
occupancy time is not considered in our analysis. The bio-
chip specifications in both reconfigurable (​​C​R​​​) and nonre-
configurable (​​C​NR​​​) settings are shown in Table 3.

1) � Case I: Short Homogeneous Pathways: This case 
arises when all the samples are perfectly grown in a 
well-controlled medium. In addition, the reagents are 
contamination free. We compare the four methods in 
terms of completion times; see Fig. 8(a). As expected, 
nonreconfigurable resource allocation leads to the 
shortest completion time. Restricted resource shar-
ing, on the other hand, shows the worst completion 
time. We also note that we can use adaptive, degrada-
tion-aware resource allocation (DA) to achieve a short 
completion time, while the chip resources are not 

Table 2  Bioassay Notation and Resource Requirement

Table 3  Number of On-Chip Modules and Array Electrodes 

in ​​C​NR​​​ and ​​C​R​​​
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severely degraded (degradation is measured in terms 
of the occupancy time); see Fig. 8(b).

2) � Case II: Long Homogeneous Pathways: We next 
study the case where all the samples are resuspended 
for additional bioassays. As shown in Fig. 8(c) 
and (d), the proposed schemes show the same pro-
files of completion times and degradation levels as 
in Case I, but with higher values. However, the com-
pletion time for DA is closer to that obtained with 
restricted resource sharing.

3) � Case III: Heterogeneous Pathways: This is a realistic 
case that emerges due to the inherent uncertainty 
about the biological contents of each sample. It 
introduces the challenge of deciding the allocation 
of resources among the heterogeneous pathways at 
runtime. Again, we evaluate the allocation schemes 
based on the completion time [Fig. 8(e)] and the deg-
radation level [Fig. 8(f)].

4) � Convergence of Degradation-Aware Resource Alloca-
tion: Finally, we study the convergence of the DA 
method. We analyze the completion time and the 
average degradation level of the shared resource-
allocation schemes with various lengths of homo-
geneous pathways, as shown in Fig. 8(g)–(h). We 
observe that the completion time for DA begins to 
converge to its counterpart in RR when the length 
of the pathway is increased. However, due to the 
restrictions imposed by both RR and DA on resource 
allocation, the degradation levels remain below a cer-
tain limit even when we increase the pathway length 
substantially, as shown in Fig. 8(h). In real-life 

scenarios, chip users tend to make optimizations in 
order to make sure that the protocol is finished as 
early as possible to avoid droplet evaporation  [33]. 
These scenarios make the DA method especially 
attractive in practice.

V.  SY N THESIS FOR L A RGE-SC A LE 
PROTOCOLS W ITH TEMPOR A L 
CONSTR A IN TS:  R E A LI Z ATION OF 
R E A L-TIME EPIGENETIC A NA LYSIS

In Section IV, a synthesis methodology was introduced to 
support nontrivial biology-on-a-chip applications at the 
downstream phase (e.g., quantitative gene-expression anal-
ysis). However, a drawback of the previous method is that it 
makes spatial reconfiguration decisions at the bioassay level 
(i.e., “locally”), and it does not capture interactions between 
multiple sample pathways at the protocol level. In other 
words, resource sharing among different sample pathways is 
achieved at a coarse-grained level, thus biochip devices are 
not efficiently exploited, particularly when further compli-
cated protocols such as gene-regulation analysis (referred to 
here as epigenetics) are considered. Furthermore, this work 
does not consider the upper-bound temporal constraints 
imposed by the application domain; these constraints may 
arise due to physical phenomena such as droplet evapora-
tion and deadlines imposed by the target chemistry, e.g., 
degradation of samples and reagents. It was found that 
droplets that are subjected to overly long-lasting reactions 
(especially in a medium of air) are susceptible to evapora-
tion, which impacts the efficiency of enzymatic reactions 
and alters protocol outcomes [33].

Fig. 8. (a)�(f) Comparison between the four resource-allocation schemesÐNON, RR, NR, and DAÐexecuting three pathways. 
(g)�(h) Performance of the shared resource-allocation schemes with various lengths of homogeneous pathways.
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In this section, we overcome the above drawbacks by 
presenting a system design and a design-automation method 
that carries out task assignment and scheduling for cyber–
physical DMFBs for quantitative analysis, e.g., the study 
of alterations in gene expression or cellular phenotype of 
epigenetics [75]. The proposed method scales efficiently to 
multiple independent biological samples and supports on-
the-fly adaptation under temporal and spatial constraints. 
Synthesis of epigenetics is mapped to real-time multiproces-
sor scheduling and formulated as an integer programming 
problem. Since the scheduling problem is NP-hard, we 
develop a heuristic for dynamic fluidic task scheduling to 
respond to protocol-flow decisions. The proposed algorithm 
provides resource sharing and handles droplet evaporation.

Furthermore, to promote component-based design [76] 
in DMFBs, the interaction between the proposed algorithm 
and other system components (actuation and firmware) is 
demonstrated using an embedded microcontroller board.

A. Miniaturization of Epigenetic-Regulation Analysis

One of the important uses of gene-expression analysis 
(GEA) described in the previous section [flowcharts cor-
responding to the benchtop protocol and the miniaturized 
implementation are shown in Fig. 5(a) and (b), respectively] 
is in epigenetics, which identifies changes in the regulation 
of gene expression that are not dependent on gene sequence. 
Often, these changes occur in response to the way the gene 
is packaged into chromatin in the nucleus. For example, 
a gene can be unfolded (“expressed”), be completely con-
densed (“silenced”), or be somewhere in between. Each 
distinct state is characterized by chromatin modifications 
that affect gene behavior. An improved understanding of 
the in vivo cellular and molecular pathways that govern epi-
genetic changes is needed to define how this process alters 
gene function and contributes to human disease [37].

Based on our benchtop study of gene-expression analy-
sis [31], we assessed the relevance of chromatin structure on 
regulation of the gene function. A second benchtop experi-
ment was carried out to image yeast chromatin samples 
under a transmission-electron microscope (TEM). Fig.  9 
relates the outcome of the experiment to gene-regulation 
behavior based on chromatin structure. With multiple 

samples and with several causative factors affecting chroma-
tin behavior, implementing epigenetic-regulation analysis 
using a benchtop setting is tedious and error prone; thus 
this preliminary benchtop study motivates the need to 
miniaturize epigenetic-regulation analysis. The benchtop 
study also provides important guidance on the design of the 
miniaturized protocol for a DMFB [75]. Fig. 10(a) depicts a 
flowchart of the benchtop protocol. The protocol consists of 
two stages.

1) � Upstream stage in which the transcriptional profile 
(gene expression) of a GFP reporter gene is investi-
gated. Control samples (GFP not under epigenetic/
drug control) and experimental strains (under epige-
netic control) were analyzed by qPCR. The goal was 
to explore how chromatin-folding alterations influ-
ence gene expression.

2) � Downstream stage in which novel modifiers of epi-
genetic gene regulation are identified. Samples 
are mutagenized, for example by ultraviolet radia-
tion, and cells whose transcriptional activity has 
been enhanced or suppressed are analyzed further. 
Following quantitative gene expression analysis, 
the causative mutation can be identified by whole 
genome sequencing. The role of the genes in epige-
netic processes can be verified by additional studies, 
including TEM analysis, ChIP, and other assays.

Similar to Section IV, reliable concurrent manipula-
tion of independent samples requires the incorporation of 
sample-dependent decision making into the protocol. We 

Fig. 9. (a) TEM image of chromatin. (b) Correlation with chromatic 
control of epigenetic gene regulation.

Fig. 10. Protocol for epigenetic gene-regulation analysis using 
(a) benchtop setup; and (b) DMFBs.
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have developed a miniaturized protocol for epigenetic-
regulation analysis; see Fig. 10(b). Using DMFBs, both 
upstream and downstream stages are carried out using the 
protocol for gene-expression analysis, followed by DNA 
pyrosequencing [20], to identify the sequences of the gener-
ated mutations. To provide a successful transformation of 
the complex epigenetic protocol into a biochip setting, a lay-
ered structure of a digital-microfluidic system is deployed.

Fig. 11 illustrates the components required for on-chip 
implementation of the protocol, and the interactions among 
them. The control software consists of a system model, 
embedded in a firmware layer, and a real-time resource 
assignment and scheduling layer. The protocol is initially 
synthesized to process the fluids across independent sample 
pathways. At the end of a bioassay, a sample is subjected to 
a detection operation that triggers the start of a decision-
making process. The firmware receives the sensor readout, 
analyzes the data, and produces a decision to the scheduler. 
Real-time synthesis is then employed to provide the needed 
actuation sequences to adapt the system to the new situation.

In principle, real-time synthesis is sufficient to capture 
the dynamics of fluid-handling operations within multiple 
sample pathways. However, an integrated system for epi-
genetics must take into account the impact of other active 
components: electrode actuation and firmware. In other 
words, the system scheduler is responsible for the timely 
coordination between the periodic loading of actuation 
sequences (​C​M​1​​​), firmware computation (​C​M​2​​​), and syn-
thesis execution (​C​M​3​​​).

Therefore, we represent our DMF platform as a hierar-
chy of components (Fig. 12); ​C​M​1​​​ triggers a set of periodic 
tasks to stimulate the CPU to transfer actuation sequences 
from the controller memory to the biochip control pins at 
the start of every actuation period. The tasks triggered by 
​C​M​2​​​ are invoked sporadically at every decision point within 
the protocol. Note that the durations of tasks generated by ​
C​M​1​​​ and ​C​M​2​​​ are fixed and can be easily determined using 
offline simulation.

Our focus in this section is on the control-software design 
and optimization, specifically, system modeling and real-
time scheduling. In Section V-D3, we present a demo using 
a microcontroller and simulation data. In Sections V-B and 
Sections V-C, we present details about the system model 
and real-time scheduling.

B. System Model

We model the DMF system for gene-regulation analysis 
in terms of real-time computing systems.

1) Biochip Resources: The DMF platform includes 
three categories of resources: a) physical, nonreconfig-
urable resources (​PN​) such as input/output (I/O) ports;  
b) physical, reconfigurable resources (​Pℛ​) such as heaters, 
detectors, and regions to manipulate magnetic beads; and 
c)  virtual, reconfigurable resources (​Vℛ​) such as mixers. 
The set of chip resources ​ℛ​ is defined as ​ℛ = PN ∪ Pℛ ∪ Vℛ​. 
Unlike ​Vℛ​, the resources in ​Pℛ​ and ​PN​ are spatially fixed, 
but a resource in ​Pℛ​ can be reconfigured to leverage the 
electrodes located within its region for sample processing 
in addition to its original function. For example, a magnet 
resource can be used either for magnetic-bead snapping or 
for sample processing, but not both at the same time.

Consequently, a biochip resource ​​ℛ​r​​ ∈ ℛ​ is characterized 
by ​​ℛ​r​​ = (​γ​ r​​​, ​​x​r​​​, ​​y​r​​​) where ​​γ​ r​​​ is the resource type, and ​​x​r​​​ and ​​y​r​​​ 
are the ​x​ and ​y​ coordinates of the resource interface, respec-
tively. The resource interface is represented by an electrode 
that connects the resource to the global, unidirectional 
routing bus. Fig. 13 shows an example of DMF resources. 
A dedicated dispensing reservoir is used to store a replen-
ishment solution to counter droplet evaporation [33]. The 
proposed chip layout can implement the epigenetic regula-
tion protocol, and it facilitates the real-time coordination of 
multiple droplets along the global routing bus.

2) Fluidic Operations in Multiple Pathways: In prior work, 
bioassay operations and the interdependencies among 
them have been modeled as a directed sequencing graph 
​G = (V, E)​ [41]. A node ​v ∈ V​ signifies an operation and an 

Fig. 11. Proposed layered structure of a DMF platform to 
miniaturize a quantitative protocol. In this section, we design the 
system model and the real-time scheduler.

Fig. 12. Hierarchical scheduling of DMF system components.
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edge ​e = (​v​1​​, ​v​2​​) ∈ E​ represents precedence relation between 
operations ​​v​1​​​ and ​​v​2​​​, respectively. This model is sufficient 
to handle synthesis for a single sample pathway, but inad-
equate for multiple sample pathways.

When multiple sample pathways are involved, modeling 
the synthesis problem based on real-time system theory ena-
bles us to assess system performance and robustness under 
various conditions and constraints, e.g., through composi-
tionality and schedulability analyses [76]. In analogy with 
real-time multiprocessor scheduling, we introduce the fol-
lowing key terms to model the synthesis problem.

• � Fluidic-task set (​T  )​: Similar to computational tasks 
in computer systems, a fluidic task ​​τ​ b​​ ∈ T​ represents a 
bioassay in a target protocol. A fluidic subtask ​​τ​ b​ i ​​ rep-
resents a fluid-handling operation within a bioassay ​​τ​ b​​​.

• � Fluidic-processor set (​ℛ​): A biochip resource is also 
referred to as a fluidic processor. Hence, a DMFB is 
comprised of a set of heterogeneous processors cor-
responding to the chip resources ​ℛ​.

In real-time systems, precedence-related subtasks can 
be assigned and scheduled on dedicated processors, where 
inter-processor communication induces delays in the 
release of subsequent subtasks [77]. Similarly, we build on 
the directed-acyclic graph (DAG) model [78] to capture 
the characteristics of a quantitative-analysis protocol. This 
model can then be used to compute task-assignment and 
scheduling solutions in our DMF system. The details of our 
task model are described below.

• � The protocol consists of a set of bioassays ​ℬ =  {​ℬ​1​​, ​
ℬ​2​​ , …​, ​​ℬ​n​​}​. Each bioassay ​​ℬ​b​​ ∈ ℬ​ is a fluidic task ​​τ​ b​​​ 
that is characterized as a 3-tuple ​(​f​ b​​, ​G​b​​ , ​D​b​​)​, where ​​
f​ b​​​ is the task release time, ​​G​b​​​ is a DAG, and ​​D​b​​​ is 
a positive integer representing the relative deadline 
of the task. DAG ​​G​b​​​, whose number of nodes will be 
denoted by ​​z​b​​​, is specified as ​​G​b​​  =  (​V​b​​, ​ E​b​​, ​ P​b​​, ​ C​b​​)​, 
where ​​V​b​​​ is a set of vertices representing subtasks ​

{​τ​ b​ 1​ , ​τ​ b​ 2​ , …, ​τ​ b​ ​z​b​​​}​, ​​E​b​​ ∈ ​[0, 1]​​ ​z​b​​×​z​b​​​​ is an adjacency matrix 
that models the directed-edge set of ​​G​b​​​, and ​​P​b​​  ∈ ​
[0, 1]​​ ​z​b​​×​z​b​​​​ is a matrix derived from ​​E​b​​​ that represents 
precedence relationships between the vertices ​​V​b​​​; 
formally, ​​P​b​​ (i, j) = 1​ if and only if subtask ​​τ​ b​ i ​​ has to 
be completed before subtask ​​τ​ b​ j ​​ starts. Finally, ​​C​b​​ ∈ ​
ℕ​​ ​z​b​​×​z​b​​×|ℛ|×|ℛ|​​ represents the lower bound routing-
cost matrix between the vertices ​​V​b​​​, considering 
all resource combinations used for subtask execu-
tions. Specifically, if resources used to execute ​​τ​ b​ i ​​ 
and ​​τ​ b​ j ​​ are determined to be ​​ℛ​r​​​ and ​​ℛ​​r​​ ′​​​​, respectively, 
​​C​b​​ (i, j, r, ​r​​ ′​) = L​ indicates that the lower bound value 
for the routing distance from the interfacing electrode 
of ​​ℛ​r​​​ to that of ​​ℛ​​r​​ ′​​​​ is equal to ​L​. Note that ​​C​b​​ (i, j, r, ​r​​ ′​)​  
is a function of coordinates ​(​x​r​​, ​y​r​​)​ and ​(​x​r′​​, ​y​​r​​ ′​​​)​, and 
it is calculated based on the unidirectional ring bus 
shown in Fig. 13. Furthermore, note that ​​C​b​​ (i, j, r, ​r​​ ′​)​  
does not have to be equal to ​​C​b​​ (i, j, ​r​​ ′​, r)​.

• � A fluidic subtask ​​τ​ b​ i ​  ∈  {​τ​ b​ 1​, ​τ​ b​ 2​ , …, ​τ​ b​ ​z​b​​​}​ is characterized 
by ​​τ​ b​ i ​  =  (​T​ b​ i ​​, ​​α​ b​ i ​​,​​S​ b​ i ​​,​​ℱ​ b​ i ​​), where i)​​T​ b​ i ​​ is a vector used 
to specify the times needed by the chip resources to 
execute subtask ​​τ​ b​ i ​​2; ii) ​​α​ b​ i ​  ∈ ​ { 0, 1}​​ |ℛ|​​ is a vector that 
specifies the subtask assignment to biochip resources 
​ℛ​ (for example, ​​α​ b​ i ​ (r)  =  1​ if subtask ​​τ​ b​ i ​​ is allocated 
to the resource ​​ℛ​r​​​); iii) ​​S​ b​ i ​​ represents the start time 
of the subtask; and iv) ​​ℱ​ b​ i ​​ represents the end time of 
the subtask.

Thus, to satisfy the requirements of the bioassay ​​ℬ​b​​​, the 
following constraints must be satisfied:

​∀ i, j, b : ​τ​ b​ i ​, ​τ​ b​ j ​ ∈ {​τ​ b​ 1​, …, ​τ​ b​ ​z​b​​​}; r, ​r​​ ′​ : ​ℛ​r​​, ​ℛ​​r​​ ′​​​ ∈ ℛ.​

(C1) ​​∑ 
r
​ ​  ​ ​α​ b​ i ​ (r) = 1​ {allocation};

(C2) ​​ℱ​ b​ i ​ ≥ ​S​ b​ i ​ + ​T​ b​ i ​ (r) . ​α​ b​ i ​ (r)​ {task duration};
(C3) ​​S​ b​ i ​ − ​ℱ​ b​ j ​ ≥ ​ C​b​​ (j, i, r, ​r​​ ′​) − K(2 − ​α​ b​ j ​ (r) − ​α​ b​ i ​ (​r​​ ′​)) −  

K(1 − ​P​b​​ (j, i))​ {task precedence and interprocessor commu-
nication}, where constant ​K​ is a large positive constant that 
linearizes the and Boolean terms in the task-precedence sat-
isfaction problem, described in

​(​S​ b​ i ​ − ​ℱ​ b​ j ​ ≥ ​C​b​​(j, i, r, ​r​​ ′​)), if (​α​ b​ i ​ (​r​​ ′​)) ∧ (​α​ b​ j ​ (r)) ∧ (​P​b​​ (j, i))​.� (2)

• � In order to counter droplet evaporation, replenish-
ment steps are incorporated before the start of every 
new bioassay [33]. Note that each bioassay ​​ℬ​b​​​ (com-
posed of a set of subtasks ​​τ​ b​ i ​​) is characterized by 
a deadline ​​D​b​​​ on its completion time after which a 
sample must be run through a just-in-time replenish-
ment process. Note that fulfilling a bioassay deadline 
is a soft real-time requirement. In addition, the need 
to fulfil all protocol deadlines imposes temporal con-
straints on our design, since resorting to extra replen-
ishment steps during protocol execution significantly 

Fig. 13. Resources of a DMF system used for implementing the 
epigenetic regulation protocol.

2​​T​ b​ i ​ (r) = ∞​ indicates that subtask ​​τ​ b​ i ​​ cannot execute on ​​ℛ​r​​​.
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impacts completion time. In other words, if a fluidic 
task violates its deadline (creating nonzero tardi-
ness), extra replenishment steps are applied to the 
associated sample pathway to counter droplet evapo-
ration, leading to an increase in completion time.

To address this problem, each subtask ​​τ​ b​ i ​​ is also charac-
terized by a Boolean variable ​​Ω​ b​ i ​ ∈ { 0, 1}​, where ​​Ω​ b​ i ​ = 1​ indi-
cates that subtask ​​τ​ b​ i ​​ is planned to start execution after the 
deadline ​​D​b​​​. In addition, ​​π​ b​​​ represents the start time of a bio-
assay ​​ℬ​b​​​ and ​Q​ models the number of time steps3 needed to 
complete sample replenishment. The following additional 
constraints must be satisfied:

​∀ i, j, b : ​τ​ b​ i ​, ​τ​ b​ j ​ ∈ {​τ​ b​ 1​ , …, ​τ​ b​ ​z​b​​​}; r, ​r​​ ′​ : ​ℛ​r​​, ​ℛ​​r​​ ′​​​ ∈ ℛ.​

(C4) ​​S​ b​ i ​ ≥ ​π​ b​​​ {bioassay start time}. The value of the vari-
able ​​Ω​ b​ i ​​ for every subtask ​​τ​ b​ i ​​ can be specified using the dif-
ference between the subtask start time ​​S​ b​ i ​​ and the absolute 
deadline ​(​π​ b​​ + ​D​b​​)​ of the bioassay, as follows.

(C5) ​U ⋅ ​Ω​ b​ i ​  ≥ ​ S​ b​ i ​ − (​π​ b​​ + ​D​b​​);  ​Ω​ b​ i ​  ≥  0;  ​Ω​ b​ i ​  ≤  1​ {tasks 
beyond deadline}, where ​U​ is a large positive constant that 
can be used to upper bound the allowable range of tardiness.

(C6) ​​ℱ​ b​ i ​  ≤ ​ T​PF​​​ {protocol finish time}. In addition, the 
inequality in (C3) is modified to incorporate replenishment 
as follows. Note that just-in-time replenishment is applied 
before subtask ​​τ​ b​ i ​​ only when ​​Ω​ b​ i ​ = 1​ and ​​Ω​ b​ j ​ = 0​, such that ​​
E​b​​ (j, i)  =  1​. In other words, the bioassay deadline ​​D​b​​​ is vio-
lated during or immediately after the execution of ​​τ​ b​ j ​​.

(C3​​​​​ ′​​) ​​S​ b​ i ​ − ​ℱ​ b​ j ​ ≥ ​C​b​​ (j, i, r, ​r​​ ′​) − K(2 − ​α​ b​ j ​ (r) − ​α​ b​ i ​ (​r​​ ′​)) −  
K(1 − ​P​b​​ (j, i )) + Q ⋅ ​λ​ b​ (j,i)​​, where ​​λ​ b​ (j,i)​​ is a Boolean variable 
specified through the expression (​​λ​ b​ (j,i)​ = ¬​Ω​ b​ j ​ ∧ ​Ω​ b​ i ​ ∧ ​E​b​​ (j, i))​, 
and it can be formulated as in (C7).

(C7) ​​λ​ b​ (j,i)​ ≥ ​Ω​ b​ i ​ − ​Ω​ b​ j ​ + ​E​b​​ (j, i) − 1 ; ​λ​ b​ (j,i)​ ≤ ​Ω​ b​ i ​ ; ​λ​ b​ (j,i)​ ≤ 1 − ​
Ω​ b​ j ​ ; ​λ​ b​ (j,i)​ ≤ ​E​b​​ (j, i)  ; ​λ​ b​ (j,i)​ ≥ 0​ {replenishment requirement}.

• � Finally, to achieve mutual exclusion in system 
resources, each resource ​​ℛ​r​​ ∈ ℛ​ is also characterized 
by a Boolean variable ​​ω​ (i,b)​ 

r ​  (t)​, where ​​ω​ (i,b)​ 
r ​  (t) = 1​ indi-

cates that ​​ℛ​r​​​ is being utilized by subtask ​​τ​ b​ i ​​ at time ​t​. 
Therefore, the following constraint must be satisfied.

(C8) ​​ ∑ 
(i,b)

​​ ​ ​ω​ (i,b)​ 
r ​  (t)  =  1​ {mutual exclusion}. The value of 

​​ω​ (i,b)​ 
r ​  (t)​ can be specified as follows.

(C9) ​​ω​ (i,b)​ 
r ​  (t) ≥ 1 − K(3 − ​α​ b​ i ​ (r) − ​δ​ b​ i ​ (t) − ​η​ b​ i ​ (t))​, where ​​

δ​ b​ i ​ (t)​ and ​​η​ b​ i ​ (t )​ are Boolean variables that are specified 
through the following formulation.

(C10) ​U ⋅ ​δ​ b​ i ​ (t) ≥ t − ​S​ b​ i ​ ;  ​δ​ b​ i ​ (t) ≥ 0;  ​δ​ b​ i ​ (t) ≤ 1.​
(C11) ​U ⋅ ​η​ b​ i ​ (t) ≥ ​ℱ​ b​ i ​ − t;  ​η​ b​ i ​ (t) ≥ 0; ​η​ b​ i ​ (t) ≤ 1.​

C. Task Assignment and Scheduling

In this section, we present our algorithm for fluidic task 
assignment and scheduling.

1) Problem Formulation: Inputs: i) A set of bioas-
says ​ℬ​, where each bioassay ​​ℬ​b​​ ∈ ℬ​ is characterized by 
a task ​​τ​ b​​ ∈ T = {​τ​ 1​​, ​τ​ 2​​, …, ​τ​ n​​}​, bioassay deadlines ​D = 

{​D​1​​, ​D​2​​, …, ​D​n​​}​, and adjacency matrices ​{​E​1​​, ​E​2​​ , …, ​E​n​​}​. 
ii)  Precedence-relationship matrices ​{​P​1​​, ​P​2​​, …, ​P​n​​}​. 
iii) A set of subtasks ​{​τ​ b​ 1​ , ​τ​ b​ 2​ , …,   ​τ​ b​ ​z​b​​​}​ for each task ​​
τ​ b​​ ∈ T​. iv) The routing-cost matrix ​​C​b​​​ for each task ​​τ​ b​​​. 
v) The processing-time vector ​​T​ b​ i​​ for each subtask ​​τ​ b​ i​​. 
vi) Biochip resources ​ℛ​.

Output: i) Assignment of fluidic subtasks to resources ​​
α​ b​ i​ (r)​. ii) Start time ​​S​ b​ i​​ and finish time ​​ℱ​ b​ i​​ for each 
subtask ​​τ​ b​ i​​.

Objective: Reduce the number of tardy tasks to avoid 

repetition of droplet-replenishment procedures.

2) Heuristic Algorithm: The scheduling problem addressed 
here is mapped to the problem of scheduling DAG tasks on 
heterogeneous multiprocessors. Recently, schedulability of 
DAG tasks in uniform multiprocessors has been investigated 
and it has been shown that this problem is NP-hard [78], 
[80]. Not much is known about schedulability of DAG tasks 
in heterogeneous multiprocessors, but the problem is likely 
to be computationally intractable [77]. We handle this prob-
lem as described below.

The pseudocode for the algorithm is described in 
Algorithm 1. The algorithm expects a user-specified input 
that characterizes the upper bound (​Υ​) on the number of 
iterations (Line 4) to terminate the optimization process. 
In addition, ​ρ​ and ​σ​ are integers that are used as weighting 

3A time step refers to the clock period, typically in the range of 
0.1–1 s [79].

Algorithm 1  Task Assignment and Scheduling
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factors for the utility function (Line 9), which is used to 
determine the goodness of a solution.

At every iteration, the algorithm performs task assign-
ment and scheduling (Lines 6–7); subtasks are randomly 
assigned to the fluidic processors according to the required 
resources (Line 6), whereas a scheduling algorithm is used 
for real-time scheduling (Lines 18–30). The algorithm eval-
uates the utility of the produced solution based on the num-
ber of bioassay-deadline violations (​​v​l​​​) and the total comple-
tion time (​​T​PF​​​) for the protocol (Lines 8–9). The solution 
with the best utility (Lines 10–13) is finally selected. We 
introduce two policies to guide the behavior of the sched-
uler (Line 21) below for updating the ready subtask queue ​
RQ​. Note that a scheduling policy must preserve precedence 
relationships among subtasks. In addition, a scheduling 
decision taken by a policy must take into consideration the 
droplet-routing cost (interprocessor communication cost).

1) First-Come–First-Served (FCFS): A static policy in which 
the ready subtasks are prioritized based on their resource-
request time. Note that the resource-access time for a subtask ​​
τ​ b​ i ​​ depends on the finish time of the preceding subtasks. This 
static approach is oblivious to bioassay deadlines.

2) Least-Progression-First (LPF): A dynamic policy in 
which the task that belongs to the least-progressing bioas-
say is selected first. The least-progressing bioassay is a bio-
assay that is most likely to miss its deadline and its tasks 
urgently need to be advanced. This policy is similar to the 
least-laxity-first policy [81]. Quantifying the progression of 
bioassay execution is performed through a utility function ​
f(​D​b​​, t, s, n) = (​D​b​​ − t)​(1 − (s/n))​​, where ​​D​b​​​ is the bioassay 
deadline, ​t​ is the elapsed time since the bioassay has started, ​
s​ is the number of time steps completed by this bioassay, and ​
n​ is the summation of the number of time steps for all the 
bioassay operations. Note that the least-progressing bioassay 
has the lowest utility value.

We are given a set ​RQ​ of ready subtasks. We determine 
the processing time, the start time, and the finish time of 
every subtask in ​RQ​ and ensure that a subtask can get hold 
of the preassigned resource at time ​t​ (Line 25). Note that a 
task ​​τ​ b​​​ that is not completed by the deadline is suspended 
until sample replenishment is carried out (Lines 22–24). 
Based on the scheduling choices, the synthesis algorithm 
(using the one-pass algorithm in [82]) is invoked to gener-
ate the actuation sequences (Line 12).

The scheduling scheme developed in this work is based 
on a timewheel that is controlled by an entity known as the 
coordinator and a priority queue, which is used to enforce 
the policy [75].

3) Scheduling-Policy Analysis: We analyze the scheduling 
policies explained above using the example in Fig. 14. We 
consider two cases: case A) a case where a limited-resource 
chip is given; case B) a case where an unlimited-resource chip 
is given. In case A, we consider a biochip with a single mixer ​

M​, a single optical detector ​D​, and a single waste reservoir ​
W​ that is used to discard droplets. In both case A and case B, 
we consider a dedicated reservoir for each dispensing opera-
tion; i.e., unique resources ​​A​b​​​, ​​O​b​​​, and ​​H​b​​​ for each task ​​τ​ b​​​. 
The task set consists of three tasks ​​τ​ 1​​​, ​​τ​ 2​​​, and ​​τ​ 3​​​, which have 
release times ​​f​ 1​​ = ​f​ 2​​ = ​f​ 3​​ = 0​. The DAG representation for 
these tasks is shown in Fig. 14. The letters inside the nodes 
indicate the assigned resources. Also, the numbers above the 
nodes (shown in black) represent the worst case process-
ing time resulting from task assignment, and the numbers 
shown in red represent the droplet-routing cost. We consider 
that the replenishment steps are carried out using dedicated 
resources in both case A and case B, and the time needed to 
complete droplet replenishment is eight time steps.

In Fig. 14, we demonstrate the timeline of the schedul-
ing output for FCFS and LPF when case A is considered. The 
results show that LPF outperforms FCFS for a limited-biochip 
setting. The reason is that LPF dynamically adapts the priori-
ties of tasks based on their progression. For example, at time ​t​ 
(shown in Fig. 14), all tasks are competing for ​M​. The utility 
values ​f​ of ​​τ​ 1​​​, ​​τ​ 2​​​, and ​​τ​ 3​​​ at this time are 5.625, 22.75, and 11.2, 
respectively. As a result, ​​τ​ 1​​​, with the least utility, is selected to 
process upon ​M​ starting at ​t​. The completion times for FCFS 
and LPF are 34 and 27, respectively.

Nevertheless, we expect that both approaches converge 
to an equivalent lower bound completion time when we 
increase the number of on-chip resources. Given the same 
set of tasks and considering case B, the number of biochip 
resources is ​​Σ​ b=1​ 

n ​ ​ z​b​​ = 7 + 7 + 4 =  18​; i.e., there is a dedi-
cated resource for each subtask ​​τ​ b​ i ​​. In this case, it is easy to 
demonstrate that task scheduling depends only on the tim-
ing characteristics of a given task set, and that the computed 
completion time represents the lower bound, based on a 
specific task assignment. We introduce the following defini-
tion that aids in our explanation [78].

In case B, the completion times obtained by FCFS 
and LPF are equal and they can be defined using  
​​T​ PF​ * ​  = ​max​ 

∀b:​G​b​​
​ ​ len(​G​b​​)​. According to the task set given4 in Fig. 14,  

​​T​ PF​ * ​  = max (17, 17, 12) = 17​, which is the lower bound comple-
tion time for FCFS and LPF when the number of resources 

4Consider a unit routing cost between the two ​M​ operations in ​​τ​ 1​​​ 
and ​​τ​ 2​​​.

Fig. 14. Illustration of scheduling fluidic tasks using FCFS and 
LPF polices with a limited-biochip setting. Red lines indicate 
interprocessor communication costs (in time steps).
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are increased; this finding is corroborated using simulations 
in Section V-D1.

The worst case time complexity of the above algorithm is ​
O(Υ . n .  | ℛ | )​ when FCFS is used and ​O(Υ. ​n​​ 2​ . | ℛ | )​ when LPF 
is used. The algorithm is invoked whenever there is a deci-
sion that has been taken, necessitating a change in the task 
assignments and schedules for the sample pathways. Note 
that the timing overhead of this algorithm is based on the 
value of the optimization parameter ​Υ​, the number of on-
chip resources, and the total number of protocol time steps. 
Since both the number of resources and time steps are speci-
fied in advance for a given platform, a biochip user can mod-
ify the response characteristics of a microfluidic system only 
by changing the value of ​Υ​. In our microcontroller demon-
stration, described in Section V-D3, we set ​Υ​ to 1 to ensure 
faster responses to protocol decisions.

To make use of the hierarchical system structure in 
Fig.  12, the execution of the algorithm needs to be inter-
leaved with electrode actuation and firmware computa-
tion. An approach for employing this scheme is to run the 
task-assignment and scheduling algorithm in a lookahead 
manner. The progression of a sample pathway through a 
sequence of bioassays, based on the flow decisions, is mod-
eled as a decision tree. While ​C ​M​1​​​ executes a bioassay at 
the ​q​th level, ​C​M​3​​​ concurrently carries out task assignment 
and scheduling considering all choices at the ​(q + 1 )​th 
level. Subsequently, the appropriate assignments and sched-
ules are selected based on the detection results obtained 
from ​C​M​2​​​. Note that ​C​M​3​​​ must complete computation of 
the ​(q + 1)​th level before ​C​M​1​​​ finishes the execution at the 
​q​th level. Fig. 15 depicts the timeline of a lookahead-based 
execution for a pathway. This execution mechanism can 
significantly reduce the impact of the timing overhead; the 
algorithm is executed concurrently with biochip actuation, 
which is usually configured to function at a rate of 1–100 Hz.

D. Simulation Results and Experimental 
Demonstration

We implemented the proposed heuristic algorithm 
using C++. The set of bioassays of the quantitative gene-
regulation protocol (described in Section V-A) were used 
as a benchmark. A comprehensive analysis of the algo-
rithm is performed based on three groups of evaluations: 
1) evaluation of scheduling policies using simulation-based 
analysis; 2) comparison with previous resource-allocation 
techniques; and 3) real-time experimental demonstration 
using an embedded microcontroller.

1) Evaluation of Scheduling Policies: Since most of the 
previous design-automation methods have not considered 
multiple sample pathways, we derive a baseline in which the 
protocol is executed for each sample separately. Therefore, 
we evaluate the performance for three task-scheduling 
schemes: a) the baseline; b) FCFS; and c) LPF. The met-
rics of comparison include: the total completion time for 
the protocol (including replenishment time) and the time 
overhead incurred by replenishment procedures due to 
deadline violation; all measured in time steps. The results 
were obtained for various chip sizes, which are represented 
in terms of the number of biochip resources (e.g., heaters, 
mixers, and detectors); see Fig. 13. The deadlines for bioas-
says were obtained using offline simulation—each bioassay 
was simulated for various chip sizes and then the longest 
completion time was considered as a deadline.

We consider three samples being concurrently sub-
jected to fluidic operations. The samples are S1 (GFP gene-
targeted sample), S2 (YFP gene-targeted sample), and S3 
(actin gene-targeted sample). We consider three different 
cases in terms of the sample pathways: Case I (short homo-
geneous pathways): a case where all three samples follow 
the same shortest pathway (12 bioassays in each pathway); 
Case II (long homogeneous pathways): a case where all 
three samples follow the same long pathway (16 bioassays 
in each pathway); and Case III (heterogeneous pathways): a 
case where these samples are different (the three pathways 
comprise 12, 14, and 16 bioassays, respectively).

Fig. 16 compares the three scheduling schemes in terms 
of completion times for the three cases. Although the base-
line scheme does not provide resource sharing (hence no 
deadline violation occurs), it leads to the highest comple-
tion times for all chip sizes. We also observe that LPF pro-
vides lower completion time compared to FCFS for tight 
resource constraints. This result corroborates our analysis 
in Section V-C3, in which we demonstrated that LPF is a 
deadline-driven approach and it achieves less tardiness, 
compared to FCFS.

We also estimate the overhead incurred due to replen-
ishment when FCFS and LPF are used. Without loss of gen-
erality, we assume that a replenishment procedure takes ten 
time steps in the worst case. It is obvious that LPF incurs 
less replenishment overhead for all chip sizes, as shown in 

Fig. 15. Lookahead-based execution for a sample pathway. The 
progression of the sample is modeled as a decision tree.
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Fig. 16. As a result, compared to FCFS, the priority scheme 
of the LPF scheduler is more effective in countering droplet 
evaporation while the protocol completion time is not sig-
nificantly increased. Also, it is noteworthy to mention that 
the difference in protocol completion time between LPF 
and FCFS gradually decreases when the number of biochip 
resources is increased; see Fig. 16. This finding also adheres 
to our analytical study performed in Section V-C3.

Next, we explore scalability of the three scheduling 
schemes. We analyze the completion time as the number 
of homogeneous pathways is varied; see Fig. 17. We observe 
that, as expected, the baseline scheme does not scale with 
the number of samples, since its completion time increases 
considerably when the number of samples is increased.

2) Comparison With Resource Allocation in Section VI: We 
next compare the completion time and resource utiliza-
tion of our real-time scheduling approach (using LPF) with 

resource-allocation techniques proposed in Section IV. This 
work introduced two schemes to derive upper and lower 
bounds on protocol completion time considering resource 
sharing. These schemes are: a) restricted resource sharing 
(RR): a scheme that fully restricts the reconfigurability of 
shared resources among bioassays; and b) unrestricted 
resource sharing (UR): a scheme that does not consider any 
restrictions on resource sharing.

For comparison, we use a simulation environment 
similar to that in Section IV, in which a gene-expression 
analysis protocol is used. The minimum resource require-
ments as well as fluid-handling operations are reused from 
Section  IV. We utilize three short homogeneous sample 
pathways, but the conclusion of this simulation holds also 
for other cases. The biochip architecture consists of seven 
resources: two mixers, two optical detectors, one magnet, 
one heater, and one charge-coupled device (CCD) camera. 
The utilization profile of a resource ​​ℛ​r​​​ over the course of the 
protocol execution is denoted by ​​u​r​​ (t)​, where ​​u​r​​ (t) = 1​ indi-
cates that resource ​​ℛ​r​​​ is used for execution during the time 
step ​[t, t + 1 ]​, whereas ​​u​r​​ (t) = 0​ indicates that the resource 
is idle during the same time step. The summation of the uti-
lization profiles of all chip resources is referred to as cumu-
lative system utilization ​U(t)​; thus ​U(t)  = ​ Σ​ r=1​ 

7 ​ ​ u​r​​ (t)​. This 
function gives an indication of how efficiently chip resources 
are used by a resource-allocation scheme over time. We use 
this function to derive the mean overall system utilization ​​U ̅ ​​ 
to compare system utilization of resource-allocation schemes 
using numerical values. The parameter ​​U  ̅​​  is calculated as 
follows:

	​​ U ̅ ​​​  = ​ 
​∫ 0​  TPF ​​ U(t) . dt

 ________ ​T​PF​​ ​​�  (3)

where ​​T​PF​​​ is the protocol completion time. An upper 
bound for ​​U ̅ ​​ is equal to the number of chip resources; i.e., 
​​U ̅ ​  ∈  [0, 7 ]​. Note that higher ​​U ̅ ​​ signifies better resource 
utilization. Although our real-time scheduler takes into 

Fig. 16. Completion times and replenishment overhead for three task-scheduling schemesÐbaseline, FCFS, and LPFÐrunning (a) short 
homogeneous pathways, (b) long homogeneous pathways, and (c) heterogeneous pathways.

Fig. 17. Scalability of the scheduling schemes with a varying 
number of homogeneous pathways: (a) using a biochip with four 
resources; and (b) using a biochip with seven resources.
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consideration droplet-routing overhead, we ignore this cost 
in our comparison.

Fig. 18(a) compares the three resource-management 
schemes based on the completion time for gene-expression 
analysis. It is obvious that the proposed real-time sched-
uler, i.e., the LPF scheduler, achieves the shortest comple-
tion time, compared to the resource-allocation schemes 
from Section IV. As expected, RR sharing leads to the worst 
case completion time due to the restrictions imposed on 
resource sharing.

Next, we analyze the resource utilization that results 
from the resource-management schemes, based on two met-
rics: percentage of resource time used effectively by proto-
col execution; and ​​U ̅ ​​. The results for the former metric is 
illustrated in Fig. 18(b). Using the LPF scheduler, 32.13% of 
the overall resource time is effectively used to execute pro-
tocol fluid-handling operations, whereas only 25.53% and 
28.34% of the overall resource time are effectively used by 
RR sharing and UR sharing, respectively. Note that resource 
allocation in Section IV is carried out at the bioassay level; 
hence, a set of resources might be reserved to execute a 
bioassay, but not used until the associated fluid-handling 
operations are invoked. As a result, both RR sharing and UR 
sharing incur a time cost due to reserving, but not using, 
chip resources; see Fig. 18(b).

Finally, results involving the parameter ​​U ̅ ​​ for resource 
utilization are shown in Fig. 18(c). The proposed LPF 
scheduler achieves the best cumulative system utilization 
(​​U ̅ ​ = 2 . 5​), compared to RR sharing (​​U ̅ ​ =  1 . 786​) and UR 
sharing (​​U ̅ ​ = 1 . 98​), respectively. These results indicate that 
the proposed real-time scheduler is more cost effective and 
it is applicable for tighter resource-budget cases.

3) Experimental Demonstration: We next demonstrate the 
application of hierarchical scheduling using a commercial 
off-the-shelf micro-controller [TI 16-bit MSP430 100-pin 
target board; see Fig. 19(b)]. An oscilloscope is used to 
probe signals generated from the components ​C​M​1​​​, ​C​M​2​​​, 
and ​C​M​3​​​; the experimental setup is shown in Fig. 19(a). The 

generated waveform is shown in Fig. 19(c), where the blue 
signal indicates the synthesized time steps based on the task 
scheduler (​C​M​3​​​), the green signal represents the actuation 
ulses (​C​M​1​​​), and the yellow pulse reflects firmware compu-
tation (​C​M​2​​​) based on a detection operation.

Our experimental target was to execute gene-expression 
analysis using two sample pathways. For testing and veri-
fication purposes, we generate a hypothetical, but feasible, 
stream of data to mimic the data transfer between the hard-
ware and the control software. These data were obtained by 
simulating the gene-expression analysis protocol with two 
sample pathways.

A timer-interrupt module was utilized to trigger periodic 
actuation tasks while the task scheduler was running. This 
mechanism provides flexible tuning for the actuation clock 
depending on the developed application [79]. The firmware 
tasks were also realized through a set of interrupt service rou-
tines (ISRs) and invoked after each (simulated) detection oper-
ation. The selection of an ISR depends on the type of detection 
method assumed, e.g., CCD-camera monitoring of cell culture 
or fluorescence detection of amplified nucleic acid.

The outcome of the experiment matches the looka-
head timing model described in Section V-C2. This experi-
ment lays the foundations for developing and testing the 
key hardware/software codesign components for real-time 

Fig. 18. Comparison between three resource-management schemes: restricted resource sharing (RR), unrestricted resource sharing, and 
LPF-based real-time scheduler (proposed). Comparison is based on: (a) protocol completion time, (b) percentage of time effectively used 
for execution, and (c) ​U(t )​ and ​​U ̅ ​​.

Fig. 19. Experimental demonstration of hierarchical scheduling. 
(a) Experimental setup. (b) The 16-b MSP430 100-pin target board. 
(c) Probed signals from ​C​M​1​​​ (green), ​C​M​2​​​ (yellow), and ​C​M​3​​​ (blue).
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DMFBs that can be used in realistic microbiology protocols. 
Hence, the work proposed in this section adds another key 
component, which is the real-time component, to the syn-
thesis infrastructure established in Section IV. As a result, 
similar to multicore system-on-chips, mapping the resource 
allocation of multiple samples (Section IV) to the real-
time context offers modular and channel-based integration 
between a DMFB and other onboard analysis modules such 
as DNA sequencers.

V I.   SY N THESIS FOR PROTOCOLS W ITH 
INDE X ED SA MPLES:  R E A LI Z ATION OF 
T Y PE-DR I V EN SINGLE- CELL A NA LYSIS

Single-cell analysis using affordable microfluidic technolo-
gies has now become a reality [65], [83]. Thousands of 
heterogeneous cells can be explored in a high-throughput 
manner to investigate the link between gene expression and 
cell types, thereby providing insights into diseases such as 
cancer [84]. Microfluidic techniques have recently been 
developed to conduct each step of the following single-cell 
experimental flow.

1) � Cell encapsulation and differentiation: Heterogeneous 
cells are isolated, encapsulated inside droplets, and 
differentiated according to their identity (type); e.g., 
their shape, size, cell-cycle stage, or lineage.

2) � Droplet indexing (barcoding): Each droplet is manip-
ulated through a sequence of biochemical procedures 
such as cell lysis and mRNA analysis. At the end of 
these steps, the in  situ type of the encapsulated cell 
may no longer be available for downstream analysis 
[85]. Therefore, indexing of droplets using barcodes is 
needed to keep track of their identity.

3) � Type-driven cell analysis: Single-cell bioassays such 
as chromatin immunoprecipitation (ChIP) are car-
ried out using microfluidics, where the selection of 
a bioassay relies on the cell type that is identified in 
Step 1 [65]. To draw meaningful conclusions, the 
experimental outcomes are associated with droplet 
barcodes injected in Step 2 [62].

Although the synthesis methods in Sections IV and V 
can handle multiple independent sample pathways, there 
are two barriers that need to be addressed in order to adopt 
these methods for practical single-cell studies.

• � Heterogeneity of single-cell methods: Not all the 
above biochemical steps can be efficiently miniatur-
ized using a single microfluidics technology. Valve-
based techniques are used to rapidly separate and 
isolate biomolecules with high resolution, making 
them suitable for cell encapsulation (Step 1) [65]. On 
the other hand, digital-microfluidic biochips (DMFBs) 
enable real-time decision making for sample process-
ing and genomic-analysis protocols, such as quantita-
tive polymerase chain reaction (qPCR) [34] (Step 3). 

However, DMFBs are not as effective for interfacing 
to the external world [86]. Hence, there is a need for 
a hybrid microfluidic system that combines the advan-
tages of the two domains, and a synthesis method that 
controls single-cell experiments in a dual-domain 
microfluidic setting.

• � Scalable droplet indexing: A single-cell analysis flow 
may  involve hundreds of cell types, each of which 
requires a distinct barcode for downstream analysis using 
digital microfluidics. Therefore, droplet indexing on a 
DMFB requires either the use of prestored droplets that 
host individual barcoding hydrogels [62] (or dyes)5—not 
feasible when a large number of cells are being investi-
gated—or a specific input reservoir for each cell type. 
The latter solution increases the fabrication cost dra-
matically. Furthermore, since reservoir control is not 
readily automated [87], it is unrealistic to assume that 
each dispensed droplet contains only one barcoding par-
ticle. Therefore, there is a pressing need for a low-cost 
mechanism for droplet barcoding.

In Sections IV and V, we introduced a synthesis frame-
work for DMFBs to support multiple sample pathways, but 
we considered that sample differentiation and indexing 
(Step #2 in Fig. 4) have been carried out in advance before 
protocol execution. Therefore, the earlier frameworks over-
looked the above challenges.

In this section, we address the above challenges by intro-
ducing a hybrid and cyber–physical microfluidic platform 
for integrated single-cell analysis. We present a synthesis 
method, referred to as Co-Synthesis (CoSyn), that allows syn-
thesis for concurrent sample pathways [83]. CoSyn enables 
coordinated control of the hybrid microfluidic components.

A. Hybrid Platform and Single-Cell Analysis

Similar to the microfluidic implementation of gene-
expression analysis (Section IV), single-cell analysis relies on 
the concurrent manipulation of sample droplets, where each 
sample cell is run through the protocol flow discussed ear-
lier. An efficient on-chip implementation of the single-cell 
analysis protocol is accomplished using a hybrid platform 
and cyber–physical adaptation. Fig. 20 shows the platform 
components matched with different protocol stages. The 
two domains are connected through a capillary interface; 
this technique has been successfully adopted in practice [87].

1) Cell Encapsulation and Flow Control: As shown in 
Fig. 20, on-chip operation starts with the encapsulation of 
single cells in droplets, which is efficiently accomplished 
using flow-based microfluidics [87]. The droplet generator 
uses a syringe pump such that the flow rate of pressure-
driven droplets can be automatically controlled via feedback. 
A capacitive sensor is placed at the interfacing electrode 

5Henceforth, we refer to dyes as barcoding droplets.
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(​​e​c​​​ in Fig. 20) on the digital side to sense a droplet  [88]. 
When the digital array is unable to accommodate additional 
droplets, it stops the flow by switching off the pump.

Note that an actuator is used in the flow-based component, 
whereas a sensor is placed on the digital side. To synchronize 
the two domains, the flow-control procedure (capacitive sens-
ing and pump control) is invoked at the same frequency as 
droplet actuation in the digital domain (1–10 Hz).

2) Cell Differentiation: Automated cell-type identification 
can be achieved by analyzing signaling events in single cells  
in situ. Similar to the miniaturization of gene-expression analy-
sis, a green fluorescent protein (GFP) reporter is used for cell 
differentiation. In each cell, the fluorescence intensity from 
the GFP (detected in real time using an on-chip fluorescence 
detector or imaging apparatus) is used to account for differ-
ences in expression level among cells; this is equivalent to clas-
sifying cells into functional clusters that represent cell types.

Although a valve-based biochip can also be used for 
cell differentiation, we consider a DMFB for this purpose 
in CoSyn due to its demonstrated ability to carry out high-
throughput fluorescence detection and distinguish between 
hundreds of cell types; this feature is not supported by valve-
based mechanisms.

3) Droplet Barcoding: Droplet barcoding is essential to 
maintain cell identity during downstream analysis. Since 
thousands of cells (and hundreds of cell types) can be 
involved in an analysis protocol, a barcoding droplet must 
be dispensed on demand, and mixed with a sample drop-
let and other reagents according to the cell type [62]. If we 
consider a population with ​n​ cell types, droplet barcoding 
on a digital-microfluidic array requires ​n​ reservoirs, each 
of which typically covers a three-electrode space. An addi-
tional electrode is needed for separation; see Fig. 21(a). In 
this case, to accommodate ​n​ reservoirs, a lower bound on 
the array perimeter is ​4n + k​ electrodes, where ​k​ is a con-
stant that represents the number of electrodes covered by 
other reservoirs. This approach is therefore impractical 

because of the significant increase in chip size with the 
number of target cell types. It also requires the dispensing 
of a single hydrogel particle per droplet; this feature has not 
been implemented yet using reservoir control.

To overcome the above limitations, a valve-based biochip 
is connected to the DMFB to exploit its pressure-driven ports 
that have smaller footprints than reservoirs; see Fig. 21(b).

This biochip is used to generate barcoding droplets via 
a syringe pump; the droplets are routed to appropriate loca-
tions on the digital-microfluidic array through a capillary 
interface [62]. With this hybrid configuration, the lower 
bound on the digital-array perimeter is reduced to ​2n + k​ 
electrodes for ​n​ cell types. A one-electrode gap is needed to 
prevent accidental mixing of droplets. This hybrid configu-
ration, however, overprovisions the number of concurrently 
utilized ports; it is unlikely that all cell types will simultane-
ously request barcoding.

As a cost-effective solution, we utilize a reconfigurable 
valve-based fabric [9]; see Fig. 21(c). This routing fabric 
acts as a crossbar since it allows routing of barcoding drop-
lets from any of the ​n​ input ports to any of the ​m​ output 
ports, where ​n  ≫  m​. The ​m​-output valve-based fabric is 
then stitched to the DMFB; hence, the lower bound on the 
perimeter is decreased to ​2m + k​. However, in this situation, ​
p​ valves (​p > 0​) are necessary for routing barcoding droplets 
across the fabric. By unlocking this capability of valve-based 
crossbars, we shift the scaling complexity from the digital 
domain to the flow-based domain, which is known to have 
a cost-effective fabrication process and efficient peripheral 
components.

We utilize the “transposer” primitive introduced in [9]. As 
shown in Fig. 22(a) and (b), a valve-based transposer appears 
in two forms: 1) a two-input, two-output transposer, which 
comprises six valves, controlled via two pneumatic inputs 
(full transposer); and 2) a two-input, one-output transposer, 
which consists of two valves controlled via two pneumatic 
inputs (half transposer). Note that only a full transposer 
allows simultaneous dispensing of two barcoding droplets, 
wherein the droplets can be driven “straight” or “crossed.”

The use of transposers to construct an ​n​-to-​m​ valve-
based crossbar leads to various design problems that must 
be tackled; see Table 4. An architectural design challenge 

Fig. 21. Droplet barcoding using: (a) a DMFB; (b) a valve-based 
biochip with one-to-one mapping between syringe pumps and DMFB 
ports; and (c) a valve-based biochip with many-to-many mapping.

Fig. 20. The hybrid platform for single-cell analysis.
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arises because various configurations of transposers can be 
exploited to achieve the required number of input and out-
put ports. For example, an 8-to-2 crossbar can be constructed 
using four “vertical” levels, as shown in Fig. 22(c), or using 
six levels, as shown in Fig. 22(d). A six-level crossbar, while 
incurring higher cost, provides a higher degree of reconfigur-
ability and flexibility in routing. Due to lack of space, we skip 
the architectural design challenge; we focus instead on the 
modeling and synthesis problems listed in Table 4.

4) Type-Driven Single-Cell Protocol: After a droplet is bar-
coded, a single-cell analysis protocol is applied to the con-
stituent cell in the DMFB, where protocol specifications are 
determined based on the cell type. For example, an investi-
gator might be interested in identifying the gene expression 
of a specific genomic loci for a certain cell type ​A​. Another 
cell type ​B​ might show unexpected heterochromatic state 
at a certain loci, and the investigator might be interested 
in identifying the protein interactions (i.e., causative pro-
teins) or chromatin modifications causing this behavior. For 
type ​A​, it is sufficient to perform gene-expression analysis 
using qPCR [34], [67], whereas ChIP protocol followed by 
qPCR must be used for type ​B​ to reveal the DNA strains con-
tributing in the activity of the causative proteins [89].

B. Mapping to Algorithmic Models

We provide a mapping of the hybrid platform and the 
single-cell analysis protocol to algorithmic models.

1) Modeling of a Valve-Based Crossbar: Recall that an ​n​-to-​m​ 
valve-based crossbar can be constructed using different com-
binations of transposers. We represent the set of transposers 
and their interconnections as a directed acyclic graph (DAG) ​
T = (X, Z)​, where a vertex ​​x​i​​ ∈ X​ is a transposer node, and an 
edge ​​z​i​​ ∈ Z​ represents a connection between two transpos-
ers. Within a transposer, the point at which a droplet can 
be routed either straight or crossed is defined as a deci-
sion point. We map an ​n​-to-​m​ valve-based crossbar (with a 
transposer network T ) into a DAG ​​ℱ​n×m​​  =  (​D​n×m​​, ​S​n×m​​)​, 
where a vertex ​​d​i​​ ∈ ​D​n×m​​​ is a flow-decision node, and an edge ​​
s​i​​ ∈ ​ S​n×m​​​ represents a channel that connects two decision 
nodes. To simplify the discussion, we do not include ​T​ in 
the notation for the crossbar DAG. We can view a full (half) 
transposer as a 2-to-2 (2-to-1) valve-based crossbar; thus, 
we represent fluid-flow control in a full (half) transposer 
as a DAG ​​ℱ​2×2​​​ (​​ℱ​2×1​​​); see Fig. 23(a)–(b). The cost ​​c​i​​​ of ​​s​i​​​ 
represents the time needed to transport fluid between the 
two connected nodes, measured in flow time steps (​​T​f​​​). We 
assume that the routing time of a droplet on a straight chan-
nel between two decision nodes is a unit of ​​T​f​​​. For example, 
as shown in Fig. 23(a), ​​c​1​​​ is equal to ​​T​f​​​, whereas ​​c​2​​​ is equal 
to ​2​T​f​​​, since even though a diagonal is shown in Fig. 22 as a 
fluidic path, routing of such paths in a transposer is imple-
mented only along the ​x​- and ​y​-directions and the distances 
along these dimensions are equal [9]. Fig. 23(c) depicts the 
graph ​​ℱ​4×2​​​ for a 4-to-2 crossbar with four levels of transpos-
ers and five levels of nodes (denoted henceforth by ​q​; ​q​ = 5 
in this case).

2) Modeling of a Digital-Microfluidic Biochip: While DMFBs 
are highly reconfigurable and can support a diverse set of 
transport paths, we reduce the burden of managing droplet 
transport in real time by considering a unidirectional ring-
based architecture, as shown in Fig. 20. Connected to this ring 
are on-chip resources. Since there is always a route between 
any pair of on-chip resources, a ring-based DMFB is modeled 
as a strongly connected DAG ​G = (V, ℰ)​, where a vertex ​​v​i​​ ∈ V​ 
represents the fluid-handling operation offered by an on-chip 
resource, and a directed edge ​​e​i​​ ∈ ℰ​ represents a path (over the 
ring) that connects two resources. The cost ​c​e​i​​​ of ​​e​i​​​ indicates 

Fig. 22. A valve-based routing fabric for droplet barcoding: (a) a 
two-input full transposer; (b) a two-input half transposer; (c) a 
four-level, 8-to-2 routing fabric; and (d) a six-level, 8-to-2 fabric.

Table 4  Design Problems for Assembling and Integrating 

an n-to-m Valve-Based Crossbar

Fig. 23. Mapping a valve-based crossbar to a graph model: (a) a full 
transposer; (b) a half transposer; and (c) a 4-to-2 crossbar.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Ibrahim and Chakrabarty: Cyber�Physical Digital-Microfluidic Biochips

22  Proceedings of the IEEE

the number of digital time steps (​​T​d​​​) needed to transport a 
droplet. We assume that the durations corresponding to ​​T​f​​​ 
and ​​T​d​​​ are equal, which can be achieved in practice by tun-
ing the actuation frequency (Hz) and the flow rate (mL/min).

3) Protocol Model and Cell State Machine: To solve the 
synthesis problem for single-cell analysis, we take into 
account the complexity imposed by the barcoding mecha-
nism. Similar to the design methodology in [67], we repre-
sent the protocol as a control flow graph (CFG) ​A = (ℋ, ℒ)​, 
in which every node ​​h​i​​ ∈ ℋ​ (referred to as a supernode) 
models a bioassay such as qPCR; see Fig. 24. A directed 
edge ​​l​i​​ ∈ ℒ​ linking two supernodes ​{​h​j​​, ​h​k​​}​ indicates that 
a potential decision can be made at runtime to direct the 
protocol flow to execute the bioassay ​​h​k​​​ after ​​h​j​​​. A super-
node ​​h​i​​​, in turn, encapsulates the sequencing graph that 
describes the fluid-handling operations of a bioassay and 
the interdependencies among them. Since there is inher-
ent uncertainty about the type of barcoding droplets for a 
sample cell at design time, we extend the basic CFG model 
by incorporating an internal supernode (barcode propaga-
tion) that describes all possible dispensing options of bar-
coding droplets. Note that this model is agnostic about the 
type of the microfluidic technology used for implement-
ing the protocol. Yet, the synthesis of each supernode is 
accomplished in a technology-aware manner using CoSyn.

In addition to the CFG model, a state machine is utilized 
to model the progression of each cell along the single-cell 
pipeline. Typically, the hybrid platform can iteratively pro-
cess thousands of cells; such cells might be scattered across 
the platform domains at any given point in time. Therefore, 
this state machine (Fig. 24) is necessary to keep track of the 
cells that are being processed simultaneously.

C. Co-Synthesis Methodology

This section formulates the dual-domain resource-
allocation problem and describes the proposed solution 
(CoSyn).

1) Problem Formulation: Our goal is to design a fully con-
nected fabric such that a droplet can be forwarded from any 

of the ​n​ inputs to any of the ​m​ output ports. We present a 
sufficient criterion for achieving a fully connected fabric. 
The proof can be found in [90].

Theorem 1: An ​n​ -to- ​m​, ​q​ -level valve-based crossbar 
is a fully connected fabric if ​n​ and ​m​ are even integers, and ​
q ≥ (m + r)/2​.

Using this theorem, we can automatically generate 
the graph model ​​ℱ​n×m​​​, thereby guaranteeing that any bar-
coding input can reach all ​m​ outputs. The algorithm is 
described in [90]. Our optimization problem is as follows.

Inputs: 1) The protocol CFG A. 2) A matrix ​C​. Each 

vector ​​C​i​​ ∈ C​ corresponds to a cell, and consists of 
integers that encode cell state machine, cell type, and 

the assigned bioassays in A. 3) The configuration of 

the valve-based system. This information includes the 

graph ​​ℱ​n×m​​​, the number of inputs ​n​, and the number of 

outputs ​m​. 4) The types of resources corresponding to 

the DMFB, their operation time, and the routing distance 

between each pair of resources.

Output: Allocation of chip modules to the individual 

cells and total completion time ​​T​comp​​​.

Objective: Minimize ​​T​comp​​​ to provide high throughput.

2) Solution Methods: An ​n​-to-​m​ valve-based crossbar 
allows only ​m​ barcoding droplets to be delivered simulta-
neously to the DMFB. We increase throughput by allowing 
pipelined routing of droplets. With pipelining, the routing 
algorithm allows a droplet to be routed even though a com-
plete path to an output is unavailable. In this case, a droplet 
is immobilized at the farthest intermediate decision node 
that is not reserved by other droplets (a pipeline stage), then 
allowed to move forward when a path is freed. Fig. 25 illus-
trates pipelined and nonpipelined routing.

To solve the routing problem, we utilize a graph-
theoretic algorithm to find vertex-disjoint shortest 
paths  [91] (refer to [83] for algorithm pseudocode). By 
computing disjoint paths, we ensure that different bar-
coding droplets do not interfere with each other during 
routing. The routing algorithm is invoked whenever a cell 
transitions from the identification state to the barcoding 

Fig. 24. CFG of type-driven analysis for a single-cell pathway.
Fig. 25. Valve-based routing of four barcoding droplets (4-to-2 
biochip): (a) with pipelining; (b) without pipelining.
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state. If all the ​m​ outputs of the chip are currently reserved, 
the algorithm generates a partially disjoint shortest length 
path from the input source to the farthest node (Fig. 25). 
This is equivalent to routing the associated barcoding drop-
let up to an intermediate point, and holding the droplet 
until another disjoint path (partial or complete) can be 
computed to advance the droplet. The channels currently 
reserved for routing a barcoding droplet cannot be accessed 
by any other droplet until the droplet being held moves out 
of the valve-based crossbar.

Since the vertices of ​​ℱ​n×m​​​ are generated in topological 
order, the shortest paths can be quickly computed. The worst 
case complexity of this algorithm is ​O(|​D​n×m​​ | + |​S​n×m​​|)​.

We use a greedy method to solve the resource-alloca-
tion problem in the DMFB; the pseudocode can be found 
in [83]. We denote a DMFB resource by ​r  ∈ ​ R​​ d​​, where ​​R​​ d​​ 
encapsulates all DMFB resources. Thus, the cost of allocat-
ing resource ​r​ to execute a fluidic operation of type ​y  ∈  Y​ 
(the set ​Y​ incorporates all operation types) is ​ρ(​r ̂ ​, r, y)  = 
γ (r, y) + ℰ(​r ̂ ​, r)​, where ​γ (r, y)​ is the operation time on ​r​ and ​
ℰ(​r ̂ ​, r )​ is the routing distance from ​​r ̂ ​​ (the currently occupied 
resource) to ​r​. The worst case computational complexity of 
this algorithm is ​O(| V |)​.

CoSyn uses a time wheel to simulate the real-time 
interactions between the individual cells and the com-
ponents of the hybrid system. The stages of the pipeline 
match the states of the cell state machine (Fig. 24). The 
time wheel interacts with both microfluidic domains 
through APIs. Whenever the time wheel locates an availa-
ble fluorescence detector at the DMFB, it allocates a cell to 
it in order to perform type identification. Next, when the 
cell type is identified and there are available valve-based 
routes (partial or complete) to route the associated bar-
coding droplet, the time wheel starts the pipelined rout-
ing process through iterations until the droplet reaches 
the electrode interface at the digital-microfluidic side and 
mixed with the cell. When a DMFB resource is available 
to further process the cell, the previously reserved valve-
based channels are released.

Real-time resource allocation for the DMFB is managed 
by the time wheel, which in turn, commits a cell pathway 
whenever its particular single-cell bioassays have executed. 
Based on an intermediate decision point, the cell might also 
be discarded during analysis.

D. Simulation Results

We implemented CoSyn using C++. A set of bioassays 
constituting the single-cell analysis protocol (Section VI-A) 
was used as a benchmark. Cell types were assigned to the 
cells using a uniform distribution function.

Since this is the first work on synthesis for hybrid 
microfluidic platforms, we have developed two baseline 
frameworks: 1) architectural baseline (ArcSyn), wherein 
the barcoding fabric is valveless and it utilizes a one-to-one 

mapping between syringe pumps and DMFB ports as in 
Fig. 21(b); and 2) algorithmic baseline (ReSyn), in which 
resource allocation is initially performed for each microflu-
idic domain separately. However, we must ensure that the 
system behavior at the boundary between the two domains 
is deterministic—the synthesis tool for the DMFB must be 
aware of the order of the barcoding droplets generated from 
the valve-based crossbar. The only way to meet this con-
straint is to disallow pipelining in the valve-based system; 
thus, an upper bound on the number of barcoding droplets 
that can be processed simultaneously is equal to ​m​. Since 
we consider a large number of cells, we divide the cells into 
batches, each of a maximum size of ​m​ cells, such that ReSyn 
executes them iteratively.

1) Performance Evaluation: We evaluate the perfor-
mance of CoSyn, ArcSyn, and ReSyn in terms of the 
total completion time for the protocol, measured in 
minutes (we assume ​​T​f​​  = ​ T​d​​ =​ 0.2 s). The assumption 
of ​​T​d​​ =​ 0.2  s is based on the fact that a DMFB can flex-
ibly function at any rate in the range from 1 to 100 Hz, 
as described in Section V-C3. Therefore, a rate of 5 Hz is 
a valid choice. On the other side, ​​T​f​​ =​ 0.2 s is associated 
with a previous flow-based design that was operated using 
a pneumatic transporter with a pumping rate of 50  Hz. 
The reported flow speed in this design is in the range of 
10–20 mm/s [92]. In our example, a transposer with a 
length of 4 mm with the proper channel configurations 
(PDMS material and diameter) can lead to a flow speed of 
4 mm/0.2 s = 20 mm/s [14].

We also fix the number of input cells to 100, and we 
consider 20 and 40 barcoding inputs (or cell types). To 
ensure that this evaluation is independent of the plat-
form architecture, the results were obtained using a 
DMFB with no resource constraints. The selected number 
of cells is based on a design that was introduced earlier 
in [34]. Usually, a cell suspension (an experiment session) 
using a microfluidic prototype includes a number of cells 
in the range of 100–1000 cells. A larger number of cells 
per suspension requires more effort during cell isolation 
and sorting.

Fig. 26(a)–(b) compares the three synthesis frame-
works in terms of completion times. ReSyn leads to the 
highest completion times due to the loose coordination 
between the DMFB and the valve-based crossbar. The 
completion time of CoSyn is close to the lower bound, 
which is obtained using ArcSyn. ArcSyn uses the maxi-
mum number of barcoding outputs due to the one-to-
one mapping between the barcoding inputs and outputs. 
Hence, these results indicate that pipelined valve-based 
routing and the coordination between the components 
of CoSyn play a key role in increasing cell-analysis 
throughput.

2) Design-Quality Assessment: We also evaluate the quality 
of the designs generated by CoSyn in terms of the number 
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of single-cell experiments that can be completed for a given 
time limit and the given number of DMFB resources. In 
addition, we also quantify the fraction of input cells that 
can be processed simultaneously by the given set of DMFB 
resources. Our objective here is to investigate the conditions 
under which CoSyn is effective. Therefore, we introduce the 
following terms.

• � Cell-analysis density: The number of cells (samples) 
that completed analysis during a specific window of 
time (cell throughput), using a given array of elec-
trodes. The time window is set to be a minute and the 
size of the array is equal to 100 electrodes.

• � DMFB capacity: A real number ​z  ∈  [0, 1]​ that pro-
vides the fraction of input cells that can be processed 
simultaneously using DMFB resources. For exam-
ple, a capacity of 1 indicates that there are sufficient 
resources to process all the cells simultaneously. On 
the other hand, a capacity of 0.5 means that the exist-
ing resources are sufficient for simultaneously pro-
cessing only half of the cells.

We investigate the design quality for valve-based cross-
bars by evaluating the cell-analysis density of CoSyn and 
ArcSyn. We simulate the execution of 50 cells using four 
barcoding outputs [Fig. 26(c)] and eight barcoding out-
puts [Fig. 26(d)]. The density values are computed while 
the capacity is varied. By comparing the density values for 
CoSyn and ArcSyn, we observe two regimes: 1) regime I 
in which the cell-analysis density of CoSyn is higher, 
i.e., it is more effective; and 2) regime II in which the 
density of CoSyn is less than or equal to the density of 
ArcSyn. Regime I highlights the fact that CoSyn efficiently 
exploits valve-based barcoding, and the power of valve-
based pipelining is evident when the DMFB resources 
are limited. On the other hand, the overprovisioning of 
resources leads to regime II, where a lower cell-analysis 
density is reported. Finally, we note that regime I shrinks 

as we increase the number of barcoding outputs; this is 
expected since CoSyn is more effective in the realistic case 
of a limited number of barcoding interfaces. This study 
has been confirmed using different settings corresponding 
to the number of cells and the number of barcoding inputs 
and outputs.

V II.   CONCLUSION A ND F U T U R E 
OU TLOOK

Digital microfluidics has the potential to change the way 
contemporary microbiology research is performed. To fos-
ter the adoption of digital microfluidics in microbiology and 
biochemistry, we have introduced a new synthesis method-
ology that helps bridge the gap between biochips designed 
by engineers and actual use of these chips by biologists. 
Motivated by real-life benchtop studies, the proposed syn-
thesis methodology exploits cyber–physical integration and 
introduces truly enabling designs for large-scale biomolecu-
lar protocols. This paper is a call to action for researchers 
in cyber–physical microfluidic systems and biochip design 
automation to engage in the transition toward realistic 
microbiology-on-chip.

As the complexity of biomolecular protocols increases, 
more demands are placed on biochip designers to meet 
precision requirements while taking into consideration 
platform costs. The step toward bridging the gap between 
microfluidics and microbiology is to address the first step, 
i.e., specification-driven experiment design, in the work-
flow shown in Fig. 4. For example, chromatin immunopre-
cipitation coupled with high-throughput DNA sequencing 
(ChIP-seq) can offer high-resolution, genome-wide analy-
sis of DNA-protein interactions. Ideally, a designer can 
plan an experiment to investigate the interaction between 
a certain DNA and all possible proteins activated by neigh-
boring genes. However, this plan requires a significant 
amount of chemicals that can be used for crosslinking all 

Fig. 26. Comparison between CoSyn, ArcSyn, and ReSyn: (a) completion time (T) using 20 barcoding inputs; (b) T for 40 barcoding inputs; 
(c) cell-analysis density (D) using four barcoding outputs; and (d) D using eight barcoding outputs.
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possible protein molecules to DNA. In addition, the dura-
tion of crosslinking and the concentration of the chemicals 
are variables that depend on the experiment environment. 
These complications (and others) need to be thoroughly 
studied and co-optimized before starting the actual 
synthesis.� 
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