
Security Trade-offs in Microfluidic Routing Fabrics
Jack Tang1, Mohamed Ibrahim2, Krishnendu Chakrabarty3, Ramesh Karri4

Department of Electrical & Computer Engineering, New York University, Brooklyn, NY, USA1, 4

Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA2, 3

jtang@nyu.edu1, mohamed.s.ibrahim@duke.edu2, krish@duke.edu3, rkarri@nyu.edu4

Abstract—Microfluidic routing fabrics, or crossbars, based
on transposer primitives provide benefits in manufacturability,
performance, and on-the-fly reconfigurability. Many applications
in microfluidics, such as DNA barcoding for single-cell analysis,
are expected to benefit from these new devices. However, the
control of these critical devices poses new security questions
that may impact the functional integrity of a microbiology
application. This paper explores the many security implications
of microfluidic crossbars that directly result from their structure,
programmability and use in critical applications. We analyze
security performance using new metrics describing how fluids
can be “scattered” to incorrect locations under fault-injection
attacks, and from these derive a probability model describing

the likelihood of a successful attack. We present a case study of
a recently described routing fabric proposed for use in a hybrid
DNA barcoding platform, and discuss how fabric designers can
improve security through architectural choices.

I. INTRODUCTION

Microfluidics—the study of the manipulation of minute
quantities of fluids—reduces sample and reagent consumption,
increases throughput, and streamlines usage in a number of
applications such as DNA processing [1], [2]. After the initial
development in basic physics, devices, and protocols starting in
the 1980s, research soon turned to computer-aided design. This
lead to breakthroughs in microfluidic protocol and architectural
synthesis [3], [4], [5], abstracting away many of the low-level
details so that end users could focus on the science instead
of the fine details of manually generating control sequences.
Microfluidics now finds itself rapidly maturing in an age where
security is a top design priority for any emerging technology.
To that end, this paper analyzes the security of a recently
introduced microfluidic hardware primitive: the transposer [6].
This primitive was developed with the intent of introducing
reconfigurability to microfluidics much in the same way that
field-programmable gate arrays (FPGAs) did for integrated
circuits. Already, transposer-based routing fabrics are being
used in sample barcoding platforms for single-cell analysis [7].

The microfluidic routing fabric introduces reconfigurability
into a system. When used as part of a cyberphysical system
deployed in distributed research settings [8], the system can
be susceptible to attack [9]. Rogue researchers may attempt
to tamper with laboratory equipment to fabricate results.
Unfortunately, this motivation is not speculative; studies have
shown that the majority of retractions in the scientific literature
are due to misconduct [10]. While the research community is
often able to identify fraudulent data, a recent publication in
The FASEB Journal [11] noted that “The more the research
community responds after the fact to incidents that diminish
trust, the more it leaves to chance the public’s support for
its work.” Additionally, corporations or nation-states may be
interested in market manipulation attacks, where the reliability

This research is supported in part by ARO grant number W911NF-17-1-
0320.

and trustworthiness of the microfluidic platform is called into
question. The motivations for attacking microfluidic platforms
are real, and microfluidic system designers would do well to
adopt a preventative mindset.

The broader security implications of microfluidics are only
starting to be understood. Digital microfluidics, a type of
microfluidic device based on the manipulation of discrete
droplet quantities [2], has been analyzed for novel security
threats [12]; malicious parties can attack the control systems
responsible for driving microfluidic platforms, leading to subtle
manipulation of fluid properties or outright premature failure.
In devices designed for diagnostic care, such attacks can
mislead physicians into incorrect diagnoses. Result manip-
ulation in other mission-critical applications such as DNA
forensics [13] or environmental monitoring [14] would also
have disastrous consequences. And in many settings, attacks
could destroy samples that are expensive or difficult to obtain.

Our premise is that for simple reconfigurable devices, such
as the microfluidic routing fabric, the relationship between
security and architectural choices can be satisfactorily quan-
tified so that a system designer can decide what trade-offs
to make. The key contribution of this paper is the definition
of these security concepts, and elucidating the idea using
microfluidic architectures culled from the research literature.
To the best of our knowledge, this is the first attempt to identify
security issues in a microfluidic technology outside of digital
microfluidic biochips (DMFBs).

The rest of this paper is organized as follows. In Section II,
we present an overview of microfluidic routing fabrics, their
notation, and their use for critical microbiology applications.
Section III discusses the security threat model. We introduce
notation, security metrics, and perform a security analysis in
Section IV. In Section V we study a routing fabric used in
DNA barcoding applications and see how alternate architec-
tures can impact security. Section VII concludes the paper.

II. BACKGROUND

We motivate this work by exploring how security vulner-
abilities can arise in important microfluidic applications when
novel hardware is introduced.

A. Microfluidics-enabled Single-Cell Analysis

Cellular analysis is a widely used procedure in clinical di-
agnostics, pharmaceutical research, and forensic science [15].
With evidence that cells, even within the same clonal popu-
lation, are heterogeneous in their genomic responses, a large
number of single-cell analysis methods have been established
using microfluidic devices [16]. Single-cell analysis relies on
encapsulation of individual cells inside droplets and tagging
these droplets with unique DNA barcodes; this procedure is
referred to as DNA barcoding [17]. Barcoded samples can

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.13

25

Valve

P1

P
2

P
1

P2

P3
P4

P3

P4

(a) (b)

Fig. 1. A schematic view of transposers [7]: (a) a 2-to-2 transposer primitive.
Route P1 enables the valves in green and disables the valves in grey, causing
both fluids to be passed straight through, while route P2 enables the opposite
set of valves to make fluids cross over. (b) a 2-to-1 transposer primitive.
Enabling either path P3 or P4 performs fluid multiplexing.

then be processed through a variable sequence of biochemical
operations while their genomic identity is preserved. To control
the DNA barcoding of thousands of heterogeneous cells, a
microfluidic routing fabric has been efficiently used [7].

The implications of these security threats are catastrophic.
From a system biology perspective, if cellular samples are not
properly barcoded, the integrity of a single-cell application
may be compromised even before regular genomic analysis
begins. Single-cell applications such as DNA forensics assume
that the cells under study were collected and barcoded in a
trustworthy manner and therefore allow making clinical or
judicial decisions based on the genomic study. Hence, insecure
single-cell microfluidics can have a significant adverse impact
on human lives. Our goal in this paper is to advance the
security of single-cell analysis that is carried out using a
microfluidic routing fabric.

B. Transposer-Based Microfluidic Routing Fabrics

Traditional continuous flow-based microfluidic devices
consist of valves and fluid flow channels that are designed
for a specific protocol. The use of a routing fabric introduces
reconfigurability by allowing a set of input fluid channels to be
dynamically redirected to a set of output channels through the
application of a suitable control signal. A microfluidic routing
fabric based on a transposer hardware primitive was recently
proposed [6].

The basic device is illustrated in Fig. 1. Two fluid
flow channels with bridging channels are controlled with a
set of valves. In [6], this primitive was constructed using a
polydimethylsiloxane (PDMS) substrate with ablated polycar-
bonate stacked above. The valves are formed as discontinuities
in the channels, which means the channels are normally closed.
An elastomeric membrane covers the valve. This membrane
distends into the gap upon vacuum actuation, allowing fluid to
flow through.

Valves with the same label share control pins. It is assumed
in this work that the state of the two control pins are always
complementary; either the controller ensures the correct anti-
polarity of control signals, or some fixed hardware provides
the inversion. When the control signal for a transposer is off,
the fluids flow straight through to the output ports. When the
control signal is asserted, the fluids cross over to the opposite
port without any contamination. An alternative transposer is
shown in Fig. 1(b). One output port can select between two
input ports, forming a microfluidic 2-to-1 multiplexer.

Routing
Fabric

.

.

.
.
.
.

K-bits

1
2

M-1
M

1
2

N-1
N

s=0 s=1(a) (b)

(c) (d)

Fig. 2. (a) A microfluidic transposer configured with deasserted control line,
passing fluids through. (b) Asserted control lines cause the fluids to cross over.
(c) An alternate transposer primitive chooses between two input fluids. (d) In
general, a microfluidic routing fabric is designed to pass N number of input
ports to M number of output ports as a function of the control port.

The transposer primitive is then used to build more com-
plex routing fabrics that can select between an arbitrary
number of inputs and outputs. The architectural specification of
these routing fabrics has not been thoroughly researched, with
only some initial results on bounds for the number of required
transposers under special cases [7]. The state-of-the-art uses
routing fabrics that are designed by hand. The problem of how
to derive the control signals used to route a fluid from a desired
input to output port is non-trivial and can be solved through
graph-theoretic algorithms [6], [7]. Additional complexity is
added to the routing problem by considering pipelining [7].

C. Representation and Notation

A microfluidic routing fabric permutes input fluid channels
to output fluid channels. We define each fluid as being perfectly
distinguishable. That is, we assume that the sensors that
ultimately read each of the fluids are not influenced by noise or
distortion of the fluid signals. We will discuss extensions of our
analysis for non-ideal systems in Sec. VI. Fig. 2(d) illustrates
a generic routing block with notation as follows: We define
a set of N input fluids arranged in order and indexed with
the letter n ∈ {1, 2, ..., N} going from top-to-bottom. The M
output ports are indexed with the letter m ∈ {1, 2, ..., .M}.
The control port is defined as s ∈ {1, 0}K where K is
the number of binary reconfigurable primitives in the fabric.
Alternate primitives with more states or more complicated
architectures may generalize s. If we assume that M,N,K
are fixed parameters, then the reconfigurable routing fabric can
be interpreted as a function f : {1, 0}K → {0, 1, 2, ...,M}N

where the domain is the control signal and the range is an N -
dimensional vector indicating where each input fluid is directed
to. If a fluid is not routed to the output, its value is set to 0.

Any routing fabric can be described in terms of an equiv-
alent state-dependent directed acyclic graph [18], [6], [7]. The
state-dependent graph gS is a map defined as gS : S → GV ,
where S is the set of system states and GV is the set of graphs
with vertex cardinality V . Fig. 3 illustrates the equivalent
graphs for the two transposer primitives. Vertices represent
fluid branching points while edges represent possible fluid
routing paths.

The vertices are arranged on an integer coordinate grid,

26

0

1

0

1 0

1

Level y

Level y+1

Stage x Stage x+1

(a) (b)

Fig. 3. (a) State-dependent graph equivalent for a 2-to-2 transposer primitive.
By convention, x-coordinates are denoted as the stage while the y-coordinates
are denoted as the level. Coordinates increase left-to-right, and top-to-bottom.
(b) Graph equivalent for a 2-to-1 transposer primitive. The output vertex can
be placed on the same level coordinate as one of the input vertices. The choice
of which vertex to use is arbitrary, unless there is a physical meaning.

and adopting a similar nomenclature presented in [6], we
call the x-coordinate the stage and the y-coordinate the level.
By convention, the top-leftmost vertex is assigned level and
stage 0. Primary inputs to the device can be identified by all
vertices with stage 0, and can be indexed directly by the level
number. Similarly primary outputs are identified by the highest
stage number. Each edge is associated with a transposer, and
corresponds to one of two transposer states. We identify these
two states with the numbers s ∈ {0, 1} to indicate whether
the specific edge is active when the corresponding transposer
control signal is a 0 or 1. Each vertex can be uniquely identified
by the level and stage number. Decision vertices are shared
between transposers, and only the edges are identifiable as
belonging to a particular transposer. The placement of vertices
on the coordinate grid is in some sense arbitrary; coordinates
can be assigned in a way that reflects the physical layout. In
this study, coordinates will be assigned such that the distance
between neighboring vertices on the same level or stage is 1.

D. Related Work in DMFB Security

Parties in the digital microfluidic biochip design flow can
compromise assays and execute denial-of-service or manip-
ulation attacks [12]. The supply chain security of digital
microfluidics has also been investigated [19]. A secure ran-
domized checkpoint system for DMFBs was developed and
analyzed in [20]. Symbolic reasoning using a golden actuation
sequence and a compromised sequence was proposed for
attack localization in [21]. In the realm of intellectual property
protection, microfluidic encryption of biochemical assays was
developed with the use of microfluidic multiplexers [22].

III. THREAT MODEL

The attacker intentionally, or inadvertently, induces faulty
operation of the routing fabric such that the fluids to be
routed are misdirected to the wrong output ports. This can
be achieved either by attacking the electronic controller unit
or the fluid control valves. Microfluidic platforms are often
integrated with a microcontroller or a computer; sensor data is
fed back to the controller to form a closed-loop cyberphysical
system, which can implement advanced functions such as
error recovery [23]. Software executing on the controller sends
signals that drive relays or level-translators, which are then
used to actuate the microfluidic platform. Pneumatic fluid
control valves are susceptible to tampering due to their large
physical scale; prototypes reported in [6] were fabricated by
hand with features as large as a millimeter.

We assume that the attacker induces faults into the hard-
ware by tampering with the electronic control hardware or the
fluid control valves rather than exploiting software vulnerabil-
ities. These attacks leverage the physical vulnerability of the
microfluidic platform, and require less expertise than software
attacks. Such attacks are classified as fault injection attacks.
Fault injection attacks have been studied extensively in the
cryptography literature [24], [25] since they can often facilitate
cryptanalysis techniques such as differential fault analysis [26].
We further assume the attacker utilizes low-cost fault injection
techniques with poor localization, such that a small number of
bit flips occur at random locations in the controller’s memory.

A. Attack Implications

Under the previously described threat model, the practical
implication of an attack are as follows:

1) Fluid Redirection. The purpose of a microfluidic
routing fabric is to direct a set of fluids from the
input ports to the output ports. Under an attack, some
fluids may be redirected to the incorrect port, causing
droplets to be mislabeled. In Fig. 4, we see that
attacking a single transposer in the routing fabric in
dashed lines causes fluids at output ports 1 and 2 to be
swapped. In an application where each of the fluids is
used for a chemical reaction, the fluids at port A and
B may be so different as to cause complete failure of
the reaction. In a droplet barcoding application, this
attack can cause cells to be mislabeled which has
consequences for the integrity of scientific inquiry.

2) Fluid Mixing. If the control signals of a transposer are
fully accessible, then it is possible to place the valves
into a state where the input fluids mix. Such an attack
has consequences that have yet to be fully understood.
Since the control valves in a single transposer cannot
be actuated simultaneously, fluid mixing can only
occur at the architectural level.

3) Inducement of Failure Modes. Reconfiguring the rout-
ing fabric into a prohibited state may cause prema-
ture failure. Certain hardware primitives may allow
multiple inlet valves to flow into the same port,
causing excess pressure to build up. Additionally,
repeated actuation of the control valves may lead to
premature wear. Since the transposer primitive is a
recent development, its reliability and failure modes
have yet to be fully described.

It is clear that microfluidic routing fabrics are vulnerable
to many security threats with serious real-world implications.
The problem is thus how to analyze and design routing fabrics
with security in mind. The following section introduces new
security notions for the analysis of routing fabric designs. After
analysis of some simple designs, we can proceed to gain some
insights into how to design better routing fabrics.

IV. SECURITY ANALYSIS

Taken at a high level, a reconfigurable fabric is a system
that maps input ports to output ports as a function of the
control port. The mapping can be one-to-one, many-to-one,
or one-to-many depending on the underlying architecture and
routing primitives used. The following security analysis seeks
to understand how these mappings behave while under attack.

27

A

B

C

D

1

2

3

4

A

B

C

D

1

2

3

4

(a)

(b)

Fig. 4. (a) Each color represents a different fluid flow under normal operation.
(b) The transposer in the dashed outline is under attack, causing fluids intended
for output ports 1 and 2 to swap places.

A

B

C

D

1

2

1

2

3

1

2

3

s = [0 0 1]

Attack a = [0 0 1]

ŝ = [0 0 0]

A

B

C

D

1

2

(a) (b)

Fig. 5. (a) Simple routing fabric with three transposers. Under state [0 0 1],
fluid B (blue) is routed to port 2 and fluid C (green) is routed to port 1. (b)
An attack causes transposer 3 to flip states, and the resultant state vector is
[0 0 0].

A. Preliminaries

Attacks on the routing fabric alter the control signals. The
most general attack consists of arbitrary modifications of the
control signals. The fault-injection attack model assumes that
an attacker can only alter a single bit. A bit is selected from
random and is forced to flip to the opposite state. If we define
the routing fabric state as a column vector

s = [s1 s2 ... sK]
T

(1)

where each entry contains 0 if the k-th routing primitive
should pass signals straight through or 1 if it should cross
them. For example, the simple fabric in Fig. 5(a) has three
routing primitives, each of which is uniquely identifiable by
the numeric index inside the primitive. The corresponding
state vector has dimension 3. When the state is s = [0 0 1],
transposers 1 and 2 are set to pass-through while transposer 3
is set to cross over.

We then define an attack vector a of dimension K where
the k-th entry means a bit flip on the k-th transposer:

a = [a1 a2 ... aK]
T

(2)

For instance, if an attack results in transposer 3 flipping its
state, we would model the attack with the vector a = [0 0 1].
The state of an attacked routing fabric can be represented as a
modified state vector ŝ which is the element-by-element XOR
of the attack vector and the unmodified state.

ŝ = a⊕ s (3)

Therefore, the attacked state in the example is ŝ = [0 0 1]⊕
[0 0 1] = [0 0 0] (Fig. 5(b)).

We will find it useful to classify attack vectors according to
their degree. We denote the set of all possible system states as
S and attack vectors as A, and define classes of attacks using
the notation Aw = {a ⊂ A | HW(a) = w}, where HW(x)
is the Hamming weight of the vector x. For example, the set
of attacks inducing a single bit flip is A1. Attacks producing
a byte flip is A8. Alternately, we may use the subscript w as
a percentage of the total number of control signals. Thus, the
attack class that flips all bits is A100%, which contains one
element: the ones vector of length K .

B. Security Metrics

Abstractly, the problem from a security analysis perspective
is to understand how the system architecture in a reconfig-
urable fabric affects the function f and its response to different
attack vectors a. For small routing fabrics, it is possible to fully
enumerate all the states of the routing fabric and investigate
how each attack interacts with the states. Undesirable states
and transitions can then be trimmed out. The exponential
dependence on the number of primitives means that it soon
becomes impractical to do such an analysis, and alternate
techniques are required.

Scattering Vector. We define a scattering vector sv as a
measurement of how far each input fluid deviates from its
intended destination. This measurement is made with a fixed
configuration input pattern and an attack vector as parameters.
If there is no attack, or if the attack is not successful, the
scattering vector is the zero vector. The entries of the scattering
vector consist of the coordinate differences (Δxn,Δyn) =
(x̂n − xn, ŷn − yn), that is the final coordinates under attack
for the n-th input port minus the final coordinates under normal
operation.

sv(s,a) =

⎡
⎢⎣
(Δx1,Δy1)
(Δx2,Δy2)

...
(ΔxN ,ΔyN)

⎤
⎥⎦ (4)

Using the example from Fig. 5, we see that there are four
input ports so N = 4. For port 1, which is connected to fluid
A, and port 4 connected to fluid D, there is no difference
between the normal and attacked states. For port 2, the attack
redirects fluid B from port 2 to port 1, so the difference in
y-coordinates is 1 with no change in x-coordinates.. Similarly
for port 3, the difference is 1. Thus, the scattering vector is
sv([0 0 1]T , [0 0 1]T) = [(0, 0) (0, 1) (0, 1) (0, 0)]T .

The scattering vector is the output of some function h :
{1, 0}K×{1, 0}K → (Z×Z)N . It is desirable for this function
to be minimized over the entire domain—a perfect attack-
resilient routing fabric would have scattering vectors equal
to the zero vector. Summing all the entries of the scattering
vector leads to a scalar useful for direct comparison, under the
assumption that all fluids are equally important. If this does
not hold, then a weighting can be introduced. While this metric
measures the effect of a particular attack on a particular routing
architecture, it does not describe the security of an architecture
in general.

Computation of the scattering vector is a straightforward
graph traversal problem given a representation of the routing
fabric as a directed graph. For each primary input, identifiable
by vertices occupying level 0, we enable the set of edges

28

�
������

�����	

gS

gS(s1) gS(s2) gS(s2K)

���
��

Fig. 6. Visualization of the problem. A state-dependent graph gS leads to
a family of related graphs depending on the current state s. Attacks alter the
state, and the differences must be quantified.

corresponding to the applied control signal s and traverse
the graph until a vertex with no outgoing edges is reached.
The same procedure is followed with the control signal under
attack ŝ, and the final coordinates of the two traversals are
computed as (|xs − xŝ|, |ys − yŝ|) to build an entry in the
scattering vector. Fig. 6 illustrates the concept: We assume
that the desired routing results in graph gS(s2), and that an
attack alters the state such that graph gS(s2K) is achieved.
The fluid starting at the vertex in orange gets routed to the
vertex in blue. The scattering is calculated as the coordinate
difference of the two blue vertices.

Probability of Scattering. We are primarily interested in
knowing whether a particular fluid from some input port is
routed to the correct output port under some attack class Aw,
and if not, how far it has deviated. This means that the system
state will be fixed in such a way that the fluid is properly
routed, while attack vectors are drawn randomly from the
attack class under consideration. We define En,d as the event
that the fluid at the input indexed by n, when routed to any
output port, deviates under attack by more than d coordinate
spaces. We define the probability of scattering as a vector:

p(d) = [P (E1,d) P (E2,d) ... P (EN,d)]
T

(5)

We calculate an individual P (En,d) by defining a helper
function getRoutedStates(n) that returns all possible ways
to route input vertex n to every output vertex. We then
attack each of these routed system states and compare co-
ordinate differences using the function calcScattering(s,a, n)
= (Δxn,Δyn). If an attack results in a combined x-y differ-
ence (Δxn+Δyn) greater than d, a counter is incremented. The
final probability is the number of successful attacks divided
by the number of routes times number of attacks. We repeat
this for every possible vertex in the set of input vertices, VIN

and collect them to form the probability of scattering vector.
Computation of the probabilities has worst-case complexity
O(N ·X · 2X ·KCw), where N is the number of inputs, X is
the largest stage, K is the number of transposers, and w is the
number of attack bits. The procedure is summarized in Fig. 7.

Computation of the probability vector can be further sim-
plified by identifying structural similarities and symmetries.

Input: Routing fabric graph gS , attack class Aw, distance d
Output: Probability of scattering p

1: p← 0

2: for each input vertex v ∈ VIN do
3: success ← 0
4: R← getRoutedStates(v)
5: for each system state r ∈ R do
6: for each possible attack a ∈ Aw do
7: if sum(calcScattering(r,a, v)) > d then
8: success ← success + 1
9: end if

10: end for
11: end for
12: p[v] = success / (|R| · |Aw|)
13: end for
14: return p

Fig. 7. Pseudocode for calculating the probability of scattering.

1

2

3

4

1

2

3

4

≅

≅≅

≅

(a) (b)

Fig. 8. (a) Graph representation of the 4-to-2 transposer. (b) Each fluid
path in the 4-to-2 transposer is structurally equivalent when we ignore non-
reachable vertices. Identifying isomorphisms can save computation time if
such symmetry is designed into the system intentionally.

Only a subset of transposers are used when routing a fluid from
input to output. Attacks that exclusively target transposers not
on potential routing paths have no effect and can be ignored.
Thus, calculation of the probability of scattering only depends
on graph vertices that are reachable from the current input
vertex under consideration. When we consider each fluid input
path and compare the equivalent graphs when eliminating non-
reachable vertices, we can group fluids that have identical
structure by calculating whether they are isomorphic. In Fig. 8,
the 4-to-2 transposer has four fluid paths. Each of these paths
can be simplified, and we see every path is isomorphic to each
other. Thus the probability of successful attack on a single fluid
path can be calculated, and this result can be duplicated for
each isomorphic entry of the probability vector. While efficient
determination of graph isomorphism may be limited to special
cases, the main benefit of considering isomorphism is that
often during the design phase, the routing architecture is known
a priori to have symmetry.

A state-dependent graph representing the routing fabric
admits several realizations based on the transposer states.
Attacks alter the system states, and the differences between the
resultant graphs are compared for analysis (Fig. 6). If attacks

29

are probabilistic, then the set of these comparisons form a
sample space. Given our security metrics, the problem becomes
more clear: the issue is that a routing fabric has 2K number
of system states where K is the number of binary primitives,
while there are nPm number of useful permutations. If there
is a gap between these two numbers, that means there are
redundant states. Under certain attack classes, these redundant
states may skew the scattering probability distribution. This
skew can be either harmful or beneficial for an attacker. For
instance, adding redundancy through parallel processing may
ensure correct operation under attack by increasing system
states.

Average Probability of Scattering. Taking the average of
the probability of scattering vector gives a convenient way to
compare the security across different architectures. We denote
this metric as

PAV G =
1

N

∑
n∈VIN

P (En, d) (6)

and use this as our main security metric. The average proba-
bility of scattering is a function of both the attack class and
the distance d.

C. Reconfigurability Ratio

Since we are interested in exploring how security trades off
with architectural choices, we express architectural information
in terms of the reconfigurability ratio. This metric describes
the gap between the number of functional reconfigurations of
the fabric and the number of system states. The goal of a
microfluidic fabric is to route a set of n input fluids to m
output ports. A perfectly reconfigurable device would allow all
m-permutations of the input to output, i.e. nPm = n!/(n−m)!.
A semi-reconfigurable device allows some subset of these
permutations, with cardinality denoted as r ≤ nPm. This num-
ber represents the functional reconfigurability. Meanwhile, the
number of system states reflects the structural reconfigurability
of the fabric. If the primitives used in the routing fabric admit
two possible states, and there are K primitives, then we have
2K number of system states. We express the reconfigurability
ratio RR as

RR =
r

2K
(7)

With the example in Fig. 5, a fully reconfigurable 4-to-2
transposer would have 12 possible permutations. However, we
see that it is impossible for fluids A and B, or fluids C and D
to be routed simultaneously. This eliminates 4 permutations,
giving r = 8. The fabric has K = 3 transposers, so the
number of system states is 8. Therefore, we evaluate the
reconfigurability ratio as RR = 1.

V. CASE STUDY

Microfluidic technology has made high-throughput DNA
barcoding a reality, allowing scientists to study gene expression
as a function of cell type. The transposer-based microfluidic
routing fabrics described in this paper were recently proposed
as part of a hybrid single-cell analysis platform [7] for its
ability to barcode cells in a space-efficient manner. In this case
study, we analyze the security implications of this platform and
describe the performance of alternate architectures.

A

B

C

D

E

F

G

H

k=10

1

2

(a)
(b)

(c)

Fig. 9. (a) A 6-level, 8-to-2 routing fabric. Extra transposers permit
additional reconfigurability, useful for pipelining operations. (b) Removal
of the four input transposers provides some security benefit at the expense
of reconfigurability. (c) Removing another three input transposers places 2-
to-1 transposer primitives at the input. Fluids A/B and G/H can never be
simultaneously routed, lowering of the fabric’s functional reconfigurability.

A. Security Implications

The routing fabric utilized in [7] has 6 levels, and permutes
8 inputs to 2 outputs. (Fig. 9(a)). Eight types of barcoding
droplets, identified by the letters A through H, are connected
to the input ports, to be dispensed on-demand to any of the
two output ports. Once dispensed, these droplets are routed
to the rest of the platform for further processing and sensing
using digital microfluidic technology integrated with actuators
and optical detectors.

To illustrate what can potentially go wrong, we show an
example fluid routing in Fig. 10(a). Barcode type A is to be
dispensed to port 2 while barcode type F is to be dispensed
to port 1. These barcodes are intended for simultaneous
application to two cell droplets. If an attacker causes a fault
within the system such that all transposer states are swapped
(i.e. an attack within class A17), we see that barcode A is
halted at an intermediate transposer. Barcode F is still able
to make it to the correct port. Barcode H, which was never
intended for use at this point in the protocol, is now dispensed
to port 2.

The practical implication of this attack for the cell study
is that the biochemical procedure will provide misleading
outcomes. As a consequence of this attack, a cell that has
been identified as type A (based on the in vivo activity of
a certain biomarker) will be wrongly tagged with a barcode
that belongs to a different sub-population of type H. During
the process of biomolecular analysis, cells are lysed and type-
driven DNA analysis is applied by using the barcode. Hence,
the alteration of barcoding causes the gene reads of type-A
cells to be interpreted as a part of type-H genomic landscape,
thus leading to a false conclusion on the gene expression
of type-A cells. If this routine analysis is carried out as a
part of a DNA forensic investigation, a suspect (with type-
A cells collected from a crime scene) may eventually escape
prosecution.

B. Security Analysis

The 8-to-2 transposer has full reconfigurability. It permits
all 56 possible permutations of inputs to be routed to the
output, while the structural reconfigurability is high, with 217

states. PAV G values are summarized in Table I. We observe

30

A

B

C

D

E

F

G

H

k=10

A

B

C

D

E

F

G

H

k=10

1

2

1

2

(a)

(b)

Fig. 10. (a) Routed fabric under normal operation. Fluid A (blue) is routed
to output port 2 while fluid F (green) is routed to output port 1. (b) After
all transposers are attacked, fluid H (red) ends up at output port 2 while
fluid F (green) moves to port 1. Fluid A (blue) is blocked at an intermediate
transposer.

TABLE I. AVERAGE PROBABILITY OF SCATTERING VS DISTANCE AND

ATTACK CLASS FOR 8-TO-2 ROUTING FABRICS

4-level 5-level 6-level

d A1 A2 A3 A1 A2 A3 A1 A2 A3

0 0.40 0.65 0.80 0.28 0.48 0.63 0.35 0.58 0.72

1 0.25 0.45 0.60 0.18 0.32 0.44 0.23 0.40 0.53

2 0.23 0.41 0.55 0.16 0.30 0.41 0.21 0.38 0.49

that single-bit attacks have a fairly low success rate, and
that increasing the attacks class by even a single bit can
dramatically increase the success rate.

An alternate 4-level 8-to-2 fabric was also considered
(Fig. 9(c)), which features only ten transposers and limits the
number of permutations to 52 out of the possible 56. The
values of PAV G in Table I show that in general, the probability
of a successful attack is higher than in the 6-level architecture.
This result is counter-intuitive, in that the fabric with a higher
degree of flexibility is also more secure. This illustrates the
fact that architectural choices can have a greater impact on
security than strictly reducing reconfigurability.

We also analyze a new 5-level design (Fig. 9(b)). This
fabric does not offer the full pipelining capabilities of the 6-
level design, but does offer more functional reconfigurability
than the 4-level design. PAVG values in Table I show that it
performs better than both the 4 and 6-level architectures under
every attack parameter. The three extra transposers beyond the
4-level design do not provide a substantial benefit in functional
reconfigurability, but introduces an exponential increase in
structural reconfigurability. This redundancy provides better
security performance.

VI. DISCUSSION

Table II summarizes the properties of the architectures
studied in this paper. Security, reconfigurability, and redun-
dancy trade-off with each other in a complex fashion during
the architectural design phase. To illustrate this point, we

TABLE II. PROBABILITY OF SCATTERING AND RECONFIGURABILITY

METRICS FOR SELECTED ROUTING FABRIC ARCHITECTURES

Routing Fabric r nPm K RR PAV G(A1, d = 0)

2-level 4-to-2 8 12 3 1.000 0.67

3-level 3-to-3 6 6 3 0.7500 0.72

4-level 8-to-2 52 56 10 0.0508 0.40

5-level 8-to-2 56 56 13 0.0068 0.28

6-level 8-to-2 56 56 17 0.0040 0.35

0 0.5 1
0

0.5

1

P
A

V
G

A
1

0 0.5 1

R
R

0

0.5

1

A
2

0 0.5 1
0

0.5

1

A
3

Fig. 11. Scatter plots of average probability of scattering (PAV G) vs.
reconfigurability ratio (RR) for attack classes A1, A2, A3 evaluated over
distances greater than 0. Each point represents a unique transposer fabric
architecture. The trend is that redundant states (lower RR) generally results
in better security (lower PAV G).

plot the average probability of scattering in Fig. 11 under
three attack classes and distances greater than 0 for all the
architectures studied in this paper, as well as additional archi-
tectures from [6]. For attack classes A1 and A2, a clear trend
emerges: a lower probability of scattering is more likely when
the ratio between functional states to structural states is lower.
Although, as demonstrated in the DNA barcoding fabric case
study, further lowering of RR does not always lead to benefits.
The relationship is less clear for attack class A3.

A. Question & Answer

To highlight some key points about this work, we present
further analysis in a question and answer format.

Does any evidence exist for the proposed adversarial model?
Routing fabrics are experimental, so no evidence for tampering
exists. However, there is ample evidence for tampering in
applications that microfluidics are expected to make headway.
See: drug screening [27], environmental monitoring [28], re-
search laboratories [29].

Since the routing fabric is only experimental, is there any value
in this analysis given that a commercial implementation may
diverge significantly?
Yes, as we have mentioned the framework here is general
and can accommodate other metrics and attack models. Fur-
thermore, security studies of experimental technologies are
important; security vulnerabilities are being discovered in a
multitude of unlikely places. Security-minded design may
drive further adoption and bridge the gap between engineering
and the life sciences [30].

Why is distance used as the key metric for the impact of an
attack?
Distance is used because barcodes used in the single-cell
analysis platform impose a hierarchy. Related cells are to be
tagged with similar barcodes. If barcodes are misapplied, there
is a possibility that due to close grouping that at least the
droplets can be within the same grouping.

31

Can the methodology be extended to account for alternate
metrics and attacks?
Yes, the distance metric can be substituted for other properties
that fluids can pick up as they move along the fabric, e.g.
temperature and contaminants. If a probabilistic attack model
is available, it can be used to scale the probability of scattering.

How does the analysis differ from fault-tolerance analysis?
Fault-tolerant analysis and design is based on the premise that
typical hardware faults can be characterized. In contrast, this
work assumes fault injection attacks with poor localization,
and models it as a random perturbation on the control signals.

How do architectural choices affect security?
Adjusting the allowable permutations benefits security only in
certain use cases. The use of the 2-to-1 transposer primitive
prevents the simultaneous routing of adjacent fluids. Yet in the
case study, we saw that the 4-level 8-to-2 fabric was the least
secure design. Limiting permutations should only be leveraged
if there are two fluids that should never be output at the same
time.

B. Limitations

In our analysis we have considered that every fluid is
equally important. Certain fluids may actually be critically
important, while others may be benign (e.g., wash fluids).
The perfectly distinguishable assumption on the sensors is
optimistic, and in reality, any real physical system is subject to
noise. The design of the sensors as well as the coding of the
DNA barcodes could potentially affect the distance metric; if
a fluid is misdirected but nearly indistinguishable from the
correct fluid, then what is the practical implication? These
questions are important, but are outside of the scope of this
paper and will be addressed as a part of future work.

VII. CONCLUSION

We presented an analysis of emerging microfluidic hard-
ware primitive in terms of its security and architecture. These
new concepts were applied to designs presented in the lit-
erature for real-time quantitative analysis. Security trade-offs
are fundamental to many systems, but have been difficult to
quantify due to complexity. The simple structure and low
complexity of microfluidic devices has lent itself to analysis,
and we find that in general, a lower reconfigurability ratio (i.e.
more redundancy) generally leads to better security properties.

There may be other systems that are amenable to the
security analysis presented here, where possible system states
are quantified. New microfluidic routing primitives could
be investigated; it was noted that in [6] that multiplexer-
demultiplexer pairs could have been implemented instead of
the transposer primitive. Furthermore, this paper has left open
the question of how to synthesize an optimal architecture. An
optimal design that considers area, routing time, reconfigura-
bility and security together using optimization techniques or
combinatorial analysis would be interesting research to pursue.
The security of microfluidics itself is an open question, which
could be tackled from a multitude of angles beyond the threat
model used here.

REFERENCES

[1] G. M. Whitesides, “The origins and the future of microfluidics,” Nature,
vol. 442, no. 7101, pp. 368–373, 2006.

[2] R. B. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”
Microfluid. Nanofluid., vol. 3, no. 3, pp. 245–281, 2007.

[3] Y. Luo et al., Hardware/software Co-Design and Optimization for
Cyberphysical Integration in Digital Microfluidic Biochips. New York,
NY: Springer, 2014.

[4] F. Su and K. Chakrabarty, “High-level synthesis of digital microfluidic
biochips,” ACM J. Emerg. Technol. Comput. Syst., vol. 3, no. 4, p. 1,
2008.

[5] ——, “Module placement for fault-tolerant microfluidics-based
biochips,” ACM Trans. Des. Autom. Electron. Sys., vol. 11, no. 3, pp.
682–710, 2006.

[6] R. Silva et al., “A reconfigurable continuous-flow fluidic routing fabric
using a modular, scalable primitive,” Lab. Chip, vol. 16, no. 14, pp.
2730–2741, 2016.

[7] M. Ibrahim et al., “CoSyn: efficient single-cell analysis using a hy-
brid microfluidic platform,” in Proc. Conf. Des. Autom. Test Europe,
Lausanne, Switzerland, Mar. 2017.

[8] ——, “BioCyBig: a cyberphysical system for integrative microfluidics-
driven analysis of genomic association studies,” IEEE Trans. Big Data,
in press.

[9] A. Cardenas et al., “Challenges for securing cyber physical systems,”
in Proc. Workshop Future Dir. Cyber-physical Syst. Security, Newark,
NJ, Jul. 2009, p. 5.

[10] F. C. Fang et al., “Misconduct accounts for the majority of retracted
scientific publications,” Proc. National Academy Sci., vol. 109, no. 42,
pp. 17 028–17 033, 2012.

[11] M. Yarborough, “Taking steps to increase the trustworthiness of sci-
entific research,” The FASEB Journal, vol. 28, no. 9, pp. 3841–3846,
2014.

[12] S. Subidh Ali et al., “Security assessment of cyberphysical digital
microfluidic biochips,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13,
no. 3, pp. 1–14, 2015.

[13] B. Bruijns et al., “Microfluidic devices for forensic DNA analysis: a
review,” Biosensors, vol. 6, no. 3, p. 41, 2016.

[14] L. Marle and G. M. Greenway, “Microfluidic devices for environmental
monitoring,” TrAC, Trends Anal. Chem., vol. 24, no. 9, pp. 795–802,
2005.

[15] J. El-Ali et al., “Cells on chips,” Nature, vol. 442, no. 7101, pp. 403–
411, 2006.

[16] S. Hosic et al., “Microfluidic sample preparation for single cell analy-
sis,” Anal. Chem., vol. 88, no. 1, pp. 354–380, 2015.

[17] A. M. Klein et al., “Droplet barcoding for single-cell transcriptomics
applied to embryonic stem cells,” Cell, vol. 161, no. 5, pp. 1187–1201,
2015.

[18] M. Mesbahi, “State-dependent graphs,” in Proc. IEEE Conf. Decision
and Control, vol. 3, Lahaina, HI, Dec. 2003, pp. 3058–3063.

[19] S. S. Ali et al., “Supply-chain security of digital microfluidic biochips,”
Computer, vol. 49, no. 8, pp. 36–43, 2016.

[20] J. Tang et al., “Securing digital microfluidic biochips by randomizing
checkpoints,” in Proc. IEEE Int. Test Conf., Fort Worth, TX, Nov. 2016,
pp. 1–8.

[21] P. Roy and A. Banerjee, “A new approach for root-causing attacks on
digital microfluidic devices,” in Proc. IEEE Asian Hardware-Oriented
Security Trust Symp., Yilan, Taiwan, Dec. 2016, pp. 1–6.

[22] S. S. Ali et al., “Microfluidic encryption of on-chip biochemical assays,”
in Proc. Biomed. Circuits Syst. Conf., Shanghai, China, Oct. 2016, pp.
152–155.

[23] Y. Luo et al., “Error recovery in cyberphysical digital microfluidic
biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 1, pp. 59–72, 2013.

[24] A. Barenghi et al., “Fault injection attacks on cryptographic devices:
theory, practice, and countermeasures,” Proc. IEEE, vol. 100, no. 11,
pp. 3056–3076, 2012.

[25] H. Bar-El et al., “The sorcerer’s apprentice guide to fault attacks,” Proc.
IEEE, vol. 94, no. 2, pp. 370–382, 2006.

[26] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. Annual International Cryptology Conference,
Santa Barbara, CA, Aug. 1997, pp. 513–525.

[27] R. G. Johnston et al., “Research note: The security of urine drug
testing,” Journal of Drug Issues, vol. 39, no. 4, pp. 1015–1028, 2009.

[28] Department of Justice, U.S. Attorneys Office, District of Massachusetts,
“Former Berkshire power manager sentenced for conspiring
to tamper with air pollution monitors,” May 2017. [Online].
Available: https://www.justice.gov/usao-ma/pr/former-berkshire-power-
manager-sentenced-conspiring-tamper-air-pollution-monitors

[29] The New York Times. (2017, Jan.) A Crime in the Cancer Lab.
[Online]. Available: https://nyti.ms/2jJc5rT

[30] H. H. Caicedo and S. T. Brady, “Microfluidics: the challenge is to bridge
the gap instead of looking for a ‘killer app’,” Trends Biotechnol., vol. 34,
no. 1, pp. 1–3, Jan. 2016.

32

