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ABSTRACT
Advances in digital-microfluidic biochips have led to minia-
turized platforms that can implement biomolecular assays.
However, these designs are not adequate for running multi-
ple sample pathways because they consider unrealistic static
schedules; hence runtime adaptation based on assay out-
comes is not supported and only a rigid path of bioassays
can be run on the chip. We present a design framework that
performs fluidic task assignment, scheduling, and dynamic
decision-making for quantitative epigenetics. We first de-
scribe our benchtop experimental studies to understand the
relevance of chromatin structure on the regulation of gene
function and its relationship to biochip design specifications.
The proposed method models biochip design in terms of real-
time multiprocessor scheduling and utilizes a heuristic algo-
rithm to solve this NP-hard problem. Simulation results
show that the proposed algorithm is computationally effi-
cient and it generates effective solutions for multiple sample
pathways on a resource-limited biochip. We also present ex-
perimental results using an embedded microcontroller as a
testbed.

1. INTRODUCTION
The increasing level of complexity in biomolecular research
motivates the need for comprehensive gene-expression anal-
ysis [8]. Digital microfluidics has emerged as an on-chip
solution for executing bioassays to support such biomolec-
ular research [18]. Digital-microfluidic biochips (DMFBs)
provide a scalable platform based on a two-dimensional ar-
ray of electrodes on which picoliter droplets can be ma-
nipulated. A DMFB can be dynamically reconfigured un-
der program control during the concurrent execution of a
set of bioassays. Moreover, today’s DMFBs embody cyber-
physical integration through on-chip sensors [14] and droplet
monitoring using a CCD camera [24]. Therefore, a reconfig-
urable DMFB platform is well-suited to replace traditional
bench-top chemistries, but with significantly smaller sam-
ple/reagent volumes and much higher automation.

Recently, DMFBs have been developed to process the com-
plete workflow for gene-expression analysis [22]. This work-
flow includes bioassays for cell lysis, mRNA isolation and
purication, cDNA synthesis, and quantitative polymerase
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chain reaction (PCR). However, these platforms were de-
signed for sample-limited analyses, in which on-chip devices
were allocated in advance. Therefore, they are not suitable
for running down-stream analysis on the“expressed”or“sup-
pressed” genes. Moreover, they lack the versatility needed
for conducting complicated quantitative protocols (e.g., epi-
genetics protocols [27]), which require the running of multi-
ple samples through independent pathways.

In realistic biomolecular protocols involving multiple sam-
ple pathways, there is inherent uncertainty about the or-
der of fluidic steps (referred to here as fluidic tasks); thus
fluidic task assignment and scheduling are significant chal-
lenges that have not been addressed thus far. Another draw-
back associated with current solutions is that they do not
cope with heterogeneity in biological processes, which is ob-
served even in samples with genetically similar cells [10]. In
today’s designs, multiple bioassays are mapped to the chip
in an a priori manner; thus manual intervention is needed
to respond to reaction outcomes. We list below several other
limitations of current methods.

• Problems arise when a reaction is terminated too soon
or allowed to run too long. For example, the completion
time for the preparation of reverse-transcription master
mixes depends on the time needed for mixing [19]. On the
other hand, droplets that are subject to overly long-lasting
reactions (especially in a medium of air) are susceptible
to evaporation, which impacts the efficiency of enzymatic
reactions and alters protocol outcomes [13]. In previous
methods, the reaction time is specified using a microfluidic
library, which considers the overly pessimistic worst-case
timing of bioassay reactions. Moreover, these methods
overlook droplet evaporation.

• Recently proposed error recovery methods make only lim-
ited use of spatial reconfiguration to avoid faulty sites [1,
15]. This approach is ineffective for real-time decision-
making for concurrent sample pathways, since it does not
provide effective resource sharing when the execution flows
of the samples are not known a priori.

• The coordination among the components of the system
controller (i.e, electrical-actuation control, firmware oper-
ation, and synthesis of fluidic operations) was overlooked
in previous methods, hence the deployment of these meth-
ods in a real-time integrated system is not feasible.

• Moreover, while today’s methods address droplet manip-
ulation on a chip for basic fluidic operations (e.g., droplet
routing [16, 26], cross-contamination avoidance [11], re-
configurability during fluidic operations, and fault toler-
ance [21]), they have yet to address the challenges asso-
ciated with non-trivial biology-on-a-chip. A key limita-
tion of prior solutions for biochip synthesis is that they
consider a given sequencing graph and a pre-determined



sequence of fluidic operations. However, in actual bio-
chemistry protocols, the actual sequence of fluidic oper-
ations is not known until intermediate reaction results
are available. Therefore, biochip designs based on static
scheduling are unrealistic and today’s techniques do not
exploit the potential of DMFBs for implementing real-life
microbiology applications. Not surprisingly, no practical
demonstrations have been reported yet using these design-
automation methods.

A new design paradigm was recently introduced in [12] to
support non-trivial biology-on-a-chip applications (e.g., quan-
titative gene-expression analysis). In this work, a dynamic
reconfiguration technique is used to spatially map resource
specifications of multiple sample pathways to the biochip de-
vices. This technique is embedded in an adaptive framework
that facilitates real-time resource sharing among bioassays
and reduces protocol completion time without sacrificing the
chip’s lifetime. However, a drawback of this work is that it
makes spatial reconfiguration decisions at the bioassay level
(i.e., “locally”), and it does not capture interactions between
multiple sample pathways at the protocol level. In other
words, resource sharing among different sample pathways is
achieved at a coarse-grained level, thus biochip devices are
not efficiently exploited. Furthermore, this work does not
consider the upper-bound temporal constraints imposed by
the application domain; these constraints may arise due to
physical phenomena such as droplet evaporation and dead-
lines imposed by the target chemistry, e.g., degradation of
samples and reagents.

Another conceptual design of control flow was presented
in [9]. However, this method is only used to advance the
specifications of Biocoder—a programming language for bio-
chemical assays—and to support conditional bioassay exe-
cution on DMFBs. It overlooks the underlying realism and
spatio-temporal challenges of microbiology-on-a-chip appli-
cations when multiple samples are involved.

Paper Contributions. We overcome the above drawbacks
by presenting a system design and a design-automation meth-
od that carries out task assignment and scheduling for cyber-
physical DMFBs for quantitative analysis, e.g., the study of
alterations in gene expression or cellular phenotype of epi-
genetics. The proposed method scales efficiently to mul-
tiple independent biological samples and supports on-the-
fly adaptation under temporal and spatial constraints. The
main contributions of this paper are as follows:
• We first present the outcomes of our benchtop experiment

to motivate the study of epigenetic regulation in fission
yeast. Motivated by the experimental results, we intro-
duce the first layered system design for DMFBs. The ex-
perimental outcomes are also used to guide the synthesis
of the underlying protocol.

• We map the synthesis problem to real-time multiprocessor
scheduling and formulate it as an Integer Programming
problem [2]. Since the scheduling is NP-hard, we develop a
heuristic for dynamic fluidic task scheduling to respond to
protocol-flow decisions. The proposed algorithm provides
resource sharing and handles droplet evaporation.

• To promote component-based design in DMFBs [20], the
interaction between the proposed algorithm and other sys-
tem components (actuation and firmware) is demonstrated
using an embedded micro-controller board.

Paper Organization. The rest of the paper is organized
as follows. An introduction to epigenetic regulation and the

layered system design are presented in Section 2. In Sec-
tion 3, we introduce the system model and associated con-
straints. Next, an algorithm for task scheduling is presented
in Section 4. Finally, results of our experimental evalua-
tion are presented in Section 5 and conclusions are drawn in
Section 6.

2. MINIATURIZATION OF EPIGENETIC-

REGULATION ANALYSIS
Quantification of the expression level for a gene is among the
most important techniques in molecular biology [27]. We
performed quantitative gene-expression analyses of a green
fluorescent protein (GFP) reporter gene under epigenetic
regulation in fission yeast. Using a benchtop setup, control
(GFP constitutively expressed) and experimental strains were
analyzed by quantitative PCR (qPCR). The steps of this ex-
periment as carried out by us are listed below.

(1) The samples were first placed in culture medium and
grown overnight; then they were observed under a Phase
Contrast Microscope to evaluate live cell concentration.

(2) Cell lysis was performed for each sample to release intra-
cellular contents, e.g., protein, nucleic acid (DNA and RNA),
and cell debris. Glass beads were used for cell lysis.

(3) Nucleic acids (NAs) were isolated and precipitated with
100% ethanol. The NAs were then resuspended in ultra-
purified diethylpyrocarbonate (DEPC) water.

(4) The purity of the isolated NA was assessed by spec-
trophotometry. Using a “QuantiTect Reverse Transcription
(RT)”kit, a DNA-wipe-out (DNAse) was added to each sam-
ple to eliminate all DNA, leaving the mRNA in the solution.
Next, positive and negative RT mixes were prepared.

(5) Finally, DNA amplification and gene-expression analysis
through qPCR were carried out.

Fig. 1(a) shows a flowchart corresponding to the benchtop
protocol for our gene-expression analysis experiment [27];
Fig. 1(b) illustrates the miniaturized implementation of this
protocol.

One of the important uses of the above quantitative-analysis
technique is in epigenetics, which identifies changes in the
regulation of gene expression that are not dependent on gene
sequence. Often, these changes occur in response to the way
the gene is packaged into chromatin in the nucleus. For ex-
ample, a gene can be unfolded (“expressed”), be completely
condensed (“silenced”), or be somewhere in between. Each
distinct state is characterized by chromatin modifications
that affect gene behaviour [7]. An improved understanding
of the in vivo cellular and molecular pathways that govern
epigenetic changes is needed to define how this process alters
gene function and contributes to human disease [27].

Based on our benchtop study of gene-expression analysis,
we assessed the relevance of chromatin structure on regula-
tion of the gene function. A second benchtop experiment
was carried out to image yeast chromatin samples under
a transmission-electron microscope (TEM) [7]. Fig. 2 re-
lates the outcome of the experiment to gene-regulation be-
haviour based on chromatin structure. With multiple sam-
ples and with several causative factors affecting chromatin
behaviour, implementing epigenetic-regulation analysis us-
ing a benchtop setting is tedious and error-prone; thus this
preliminary benchtop study motivates the need to miniatur-
ize epigenetic-regulation analysis. The benchtop study also
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Figure 1: (a)-(b) Protocol for gene-expression analysis using (a) benchtop setup; (b) DMFBs. (c)-(d) Protocol
for epigenetic gene-regulation analysis using (c) benchtop setup; (d) DMFBs.

provides important guidance on the design of the miniatur-
ized protocol for a DMFB. Fig. 1(c) depicts a flowchart of
the benchtop protocol. The protocol consists of two stages:

(1) Up-stream stage in which the transcriptional profile (gene
expression) of a GFP reporter gene is investigated. Control
samples (GFP not under epigenetic/drug control) and ex-
perimental strains (under epigenetic control) were analyzed
by qPCR. The goal was to explore how chromatin-folding
alterations influence gene expression.
(2) Down-stream stage in which novel modifiers of epigenetic
gene regulation are identified. Samples are mutagenized, for
example by ultraviolet radiation, and cells whose transcrip-
tional activity has been enhanced or suppressed are analyzed
further. Following quantitative gene expression analysis, the
causative mutation can be identified by whole genome se-
quencing [3]. The role of the genes in epigenetic processes
can be verified by additional studies, including TEM analy-
sis, ChIP, and other assays.

Reliable concurrent manipulation of independent samples re-
quires the incorporation of sample-dependent decision-making
into the protocol. We have developed a miniaturized pro-
tocol for epigenetic-regulation analysis; see Fig. 1(d). Using
DMFBs, both up-stream and down-stream stages are car-
ried out using the protocol for gene-expression analysis, fol-
lowed by DNA pyrosequencing [5], to identify the sequences
of the generated mutations. To provide a successful trans-
formation of the complex epigenetic protocol into a biochip
setting, a layered structure of a digital-microfluidic system
is deployed.

Fig. 3 illustrates the components required for on-chip imple-
mentation of the protocol, and the interactions among them.
The control software consists of a system model, embedded
in a firmware layer, and a real-time resource assignment and
scheduling layer. The protocol is initially synthesized to pro-
cess the fluids across independent sample pathways. At the

Figure 2: (a) TEM image of chromatin; (b) cor-
relation with chromatic control of epigenetic gene
regulation.
end of a bioassay, a sample is subjected to a detection opera-
tion that triggers the start of a decision-making process. The
firmware receives the sensor readout, analyzes the data, and
produces a decision to the scheduler. Real-time synthesis is
then employed to provide the needed actuation sequences to
adapt the system to the new situation.

In principle, the real-time synthesis is sufficient to capture
the dynamics of fluid-handling operations within multiple
sample pathways. However, an integrated system for epige-
netics must take into account the impact of other active com-
ponents: electrode actuation and firmware. In other words,
the system scheduler is responsible for the timely coordi-
nation between the periodic loading of actuation sequences
(CM1), firmware computation (CM2), and synthesis execu-
tion (CM3).

Therefore, we represent our digital microfluidic (DMF) plat-
form as a hierarchy of components (Fig. 4); CM1 triggers a
set of periodic tasks to stimulate the CPU to transfer actu-
ation sequences from the controller memory to the biochip
control pins at the start of every actuation period. The
tasks triggered by CM2 are invoked sporadically at every
decision-point within the protocol. Note that the durations
of tasks generated by CM1 and CM2 are fixed and can be
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easily determined using offline simulation.

Our focus in this paper is on the control-software design
and optimization, specifically, system modeling and real-
time scheduling. A fully integrated hardware/software demo
involving a fabricated biochip is a part of ongoing work, and
beyond the scope of this paper. In Section 5.3, we present
a preliminary demo using a micro-controller and simulation
data. In the following two sections, we present details about
the system model and real-time scheduling.

3. SYSTEM MODEL
We model the digital microfluidic (DMF) system for gene-
regulation analysis in terms of real-time computing systems.

3.1 Biochip Resources
The DMF platform includes three categories of resources:
(1) physical, non-reconfigurable resources (PN ) such as I/O
ports, (2) physical, reconfigurable resources (PR) such as
heaters, detectors, and regions to manipulate magnetic beads,
and (3) virtual, reconfigurable resources (VR) such as mix-
ers. The set of chip resources R is defined as R = PN ∪
PR ∪ VR. Unlike VR, the resources in PR and PN are
spatially fixed, but a resource in PR can be reconfigured to
leverage the electrodes located within its region for sample
processing in addition to its original function. For exam-
ple, a magnet resource can be used either for magnetic-bead
snapping or for sample processing, but not both at the same
time.
Consequently, a biochip resource Rr ∈ R is characterized by
Rr = (γr, xr, yr) where γr is the resource type, xr and yr
are the x and y coordinates of the resource interface, respec-
tively. The resource interface is represented by an electrode
that connects the resource to the global, unidirectional rout-
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interfacing 

electrode

Global 

ring bus

xy

Figure 5: Resources of a DMF system used for im-
plementing the epigenetic regulation protocol.

ing bus. Fig. 5 shows an example of DMF resources. A ded-
icated dispensing reservoir is used to store a replenishment
solution to counter droplet evaporation [13]. The proposed
chip layout can implement the epigenetic regulation proto-
col, and it facilitates the real-time coordination of multiple
droplets along the global routing bus.

3.2 Fluidic Operations in Multiple Pathways
In prior work, bioassay operations and the interdependencies
among them have been modeled as a directed sequencing
graph G = (V,E) [25]. A node v ∈ V signifies an operation
and an edge e = (v1, v2) ∈ E represents precedence relation
between operations v1 and v2, respectively. This model is
sufficient to handle synthesis for a single sample pathway,
but inadequate for multiple sample pathways.

When multiple sample pathways are involved, modeling the
synthesis problem based on real-time system theory enables
us to assess system performance and robustness under var-
ious conditions and constraints, e.g., through composition-
ality and schedulability analyses [20]. In analogy with real-
time multiprocessor scheduling, we introduce the following
key terms to model the synthesis problem:

• Fluidic-task set (T ): Similar to computational tasks in
computer systems, a fluidic task τb ∈ T represents a bioas-
say in a target protocol. A fluidic subtask τ i

b represents a
fluid-handling operation within a bioassay τb.

• Fluidic-processor set (R): A biochip resource is also re-
ferred to as a fluidic processor. Hence, a DMFB is com-
prised of a set of heterogeneous processors corresponding
to the chip resources R.

In real-time systems, precedence-related subtasks can be as-
signed and scheduled on dedicated processors, where inter-
processor communication induces delays in the release of
subsequent subtasks [4]. Similarly, we build on the directed-
acyclic graph (DAG) model [6] to capture the characteristics
of a quantitative-analysis protocol. This model can then be
used to compute task-assignment and scheduling solutions
in our DMF system. The details of our task model are de-
scribed below.
• The protocol consists of a set of bioassays B = {B1,B2, ...,

Bn}. Each bioassay Bb ∈ B is a fluidic task τb that is
characterized as a 3-tuple (φb, Gb, Db), where φb is the
task release time, Gb is a DAG, and Db is a positive in-
teger representing the relative deadline of the task. DAG
Gb, whose number of nodes will be denoted by zb, is spec-
ified as Gb = (Vb, Eb, Pb, Cb), where Vb is a set of vertices
representing subtasks {τ1

b , τ
2
b , ..., τ

zb
b }, Eb ∈ [0, 1]zb×zb is

an adjacency matrix that models the directed-edge set
of Gb, and Pb ∈ [0, 1]zb×zb is a matrix derived from Eb



that represents precedence relationships between the ver-
tices Vb; formally, Pb(i, j) = 1 if and only if subtask τ i

b

has to be completed before subtask τ
j

b starts. Finally,

Cb ∈ N
zb×zb×|R|×|R| represents the lower-bound routing-

cost matrix between the vertices Vb, considering all re-
source combinations used for subtask executions. Specifi-
cally, if resources used to execute τ i

b and τ
j

b are determined
to be Rr and Rr′ , respectively, Cb(i, j, r, r

′) = L indicates
that the lower-bound value for the routing distance from
the interfacing electrode of Rr to that of Rr′ is equal to L.
Note that Cb(i, j, r, r

′) is a function of coordinates (xr, yr)
and (xr′ , yr′), and it is calculated based on the unidirec-
tional ring bus shown in Fig. 5. Furthermore, note that
Cb(i, j, r, r

′) does not have to be equal to Cb(i, j, r
′, r).

• A fluidic subtask τ i
b ∈ {τ1

b , τ
2
b , ..., τ

zb
b } is characterized by

τ i
b = (T i

b ,α
i
b,S

i
b,F

i
b), where: (i)T

i
b is a vector used to spec-

ify the times needed by the chip resources to execute sub-
task τ i

b ;
1 (ii) αi

b ∈ {0, 1}|R| is a vector that specifies the
subtask assignment to biochip resources R

(

i.e., αi
b(r) = 1

if subtask τ i
b is allocated to the resource Rr

)

; (iii) Si
b rep-

resents the start time of the subtask; (iv) F i
b represents

the end time of the subtask.

Thus, to satisfy the requirements of the bioassay Bb, the
following constraints must be satisfied:

∀i, j, b : τ i
b , τ

j

b ∈ {τ1
b , ..., τ

zb
b }; r, r′ : Rr,Rr′ ∈ R,

(C1)
∑

r
αi
b(r) = 1 {allocation};

(C2) F i
b ≥ Si

b + T i
b (r).α

i
b(r) {task duration};

(C3) Si
b − Fj

b ≥ Cb(j, i, r, r
′) − K(2 − α

j

b(r) − αi
b(r

′)) −
K(1−Pb(j, i)) {task precedence and inter-processor com-
munication}, where the constant K is a large positive
constant that linearizes the AND Boolean terms in the
task-precedence satisfaction problem, described in Equa-
tion (1).
(

Si
b −Fj

b ≥ Cb(j, i, r, r
′)
)

if
(

α
i
b(r

′)
)

∧
(

α
j

b(r)
)

∧
(

Pb(j, i)
)

(1)
• In order to counter droplet evaporation, replenishment

steps are incorporated before the start of every new bioas-
say [13]. Note that each bioassay Bb (composed of a set of
subtasks τ i

b) is characterized by a deadline, Db, on its com-
pletion time after which a sample must be run through a
just-in-time replenishment process. Note that fulfilling a
bioassay deadline is a soft real-time requirement. In addi-
tion, the need to fulfil all protocol deadlines imposes tem-
poral constraints on our design, since resorting to extra re-
plenishment steps during protocol execution significantly
impacts completion time. In other words, if a fluidic task
violates its deadline (creating non-zero tardiness), extra
replenishment steps are applied to the associated sample
pathway to counter droplet evaporation, leading to an in-
crease in completion time.

To address this problem, each subtask τ i
b is also charac-

terized by a Boolean variable Ωi
b ∈ {0, 1}, where Ωi

b = 1
indicates that subtask τ i

b is planned to start execution af-
ter the deadline Db. In addition, πb represents the start
time of a bioassay Bb and Q models the number of time
steps2 needed to complete sample replenishment. The fol-
lowing additional constraints must be satisfied:

1T i
b (r) = ∞ indicates that subtask τ i

b cannot execute on Rr.
2A time-step refers to the clock period, typically in the range
of 0.1 to 1 second [19].

∀i, j, b : τ i
b , τ

j

b ∈ {τ1
b , ..., τ

zb
b }; r, r′ : Rr,Rr′ ∈ R,

(C4) Si
b ≥ πb {bioassay start time};

The value of the variable Ωi
b for every subtask τ i

b can be
specified using the difference between the subtask start
time Si

b and the absolute deadline (πb+Db) of the bioassay,
as follows:
(C5) U · Ωi

b ≥ Si
b − (πb + Db); Ωi

b ≥ 0; Ωi
b ≤ 1 {tasks

beyond deadline}, where U is a large positive constant
that can be used to upper-bound the allowable range of
tardiness;
(C6) F i

b ≤ TPF {protocol finish time};

In addition, the inequality in (C3) is modified to incorpo-
rate replenishment as follows. Note that just-in-time re-
plenishment is applied before subtask τ i

b only when Ωi
b = 1

and Ωj

b = 0, such that Eb(j, i) = 1. In other words, the
bioassay deadline Db is violated during or immediately
after the execution of τ j

b .

(C3′) Si
b − Fj

b ≥ Cb(j, i, r, r
′) − K(2 − α

j

b(r) − αi
b(r

′)) −

K(1− Pb(j, i)) +Q · λ(j,i)
b ; where λ

(j,i)
b is a Boolean vari-

able specified through the expression
(

λ
(j,i)
b = ¬Ωj

b ∧Ωi
b ∧

Eb(j, i)
)

, and it can be formulated as in (C7);

(C7) λ
(j,i)
b ≥ Ωi

b − Ωj

b + Eb(j, i) − 1;λ
(j,i)
b ≤ Ωi

b;λ
(j,i)
b ≤

1− Ωj

b;λ
(j,i)
b ≤ Eb(j, i);λ

(j,i)
b ≥ 0 {replenishment require-

ment}.

• Finally, to achieve mutual exclusion in system resources,
each resource Rr ∈ R is also characterized by a Boolean
variable ωr

(i,b)(t), where ωr
(i,b)(t) = 1 indicates that Rr

is being utilized by subtask τ i
b at time t. Therefore, the

following constraint must be satisfied:

(C8)
∑

(i,b) ωr
(i,b)(t) = 1 {mutual exclusion};

The value of ωr
(i,b)(t) can be specified as follows:

(C9) ωr
(i,b)(t) ≥ 1−K(3−αi

b(r)−δib(t)−ηi
b(t)); where δ

i
b(t)

and ηi
b(t) are Boolean variables that are specified through

the following formulation:

(C10) U · δib(t) ≥ t− Si
b; δib(t) ≥ 0; δib(t) ≤ 1;

(C11) U · ηi
b(t) ≥ F i

b − t; ηi
b(t) ≥ 0; ηi

b(t) ≤ 1.

4. TASK ASSIGNMENT AND SCHEDULING
In this section, we present our algorithm for fluidic task
assignment and scheduling.

4.1 Problem Formulation
Inputs: (i) A set of bioassays B, where each bioassay Bb ∈ B
is characterized by a task τb ∈ T = {τ1, τ2, ..., τn}, bioas-
say deadlines D = {D1, D2, ..., Dn}, and adjacency ma-
trices {E1, E2, ..., En}; (ii) precedence-relationship matrices
{P1, P2, ..., Pn}; (iii) a set of subtasks {τ1

b , τ
2
b , ..., τ

zb
b } for

each task τb ∈ T ; (iv) the routing-cost matrix Cb for each
task τb; (v) the processing-time vector T i

b for each subtask
τ i
b ; (vi) biochip resources R.

Output: (i) Assignment of fluidic subtasks to resources
αi
b(r); (ii) start time Si

b and finish time F i
b for each sub-

task τ i
b .

Objective: Reduce the number of tardy tasks to avoid rep-
etition of droplet-replenshiment procedures.



Algorithm 1: TASK ASSIGNMENT AND SCHEDULING

1: procedure Main(T , ρ, σ,D,C, T,R, E, P,Q,Υ)
2: Sol← ∅; Tc ←∞; vl←∞; utilmin ←∞;
3: iter ← 0; αprev ← ∅;
4: while iter ≤ Υ do

5: iter ← 0;
6: α← PROCESSOR ASSIGN(T ,R, C, αprev);
7: TPF ,Si

b
,F i

b
← COORDINATE(T , C, T,D, α,R, E, P,Q);

8: vl ← CAL VIOLATIONS(D,Si
b
,F i

b
);

9: util← ρ.TPF + σ.vl;
10: if util < utilmin then

11: utilmin ← util;
12: Sol← GET RESULTS(TPF ,Si

b
,F i

b
);

13: end if

14: αprev ← αprev ∪ α; iter ← iter + 1;
15: end while

16: return Sol;
17: end procedure

18: procedure COORDINATE(T , C, T,D, α,R, E, P,Q)
19: t← 0;
20: while true do

21: RQ← PUSH READY TASK SORT(τ, P, C);
22: if t == Db AND TASK UNFIN(τb, E) then

23: REPLENISH(τb,Q);
24: end if

25: Si
b
,F i

b
← SCHEDULE IF POSSIBLE(RQ, T, t, α,R);

26: t← t+ 1;
27: if all T scheduled then break;
28: end while

29: return {TPF ,Si
b
,F i

b
};

30: end procedure

4.2 Heuristic Algorithm
The scheduling problem addressed here is mapped to the
problem of scheduling DAG tasks on heterogeneous multi-
processors. Recently, schedulability of DAG tasks in uniform
multiprocessors has been investigated and it has been shown
that this problem is NP-hard [6, 23]. Not much is known
about schedulability of DAG tasks in heterogeneous multi-
processors, but the problem is likely to be computationally
intractable [4]. We handle this problem as described below.

The pseudo-code for the algorithm is described in Algo-
rithm 1. The algorithm expects a user-specified input that
characterizes the upper-bound (Υ) on the number of iter-
ations (Line 4) to terminate the optimization process. In
addition, ρ and σ are integers that are used as weighting
factors for the utility function (Line 9), which is used to
determine the goodness of a solution.

At every iteration, the algorithm performs task assignment
and scheduling (Lines 6-7); subtasks are randomly assigned
to the fluidic processors according to the required resources
(Line 6), whereas a scheduling algorithm is used for real-time
scheduling (Lines 18-30). The algorithm evaluates the utility
of the produced solution based on the number of bioassay-
deadline violations (vl) and the total completion time (TPF )
for the protocol (Lines 8-9). The solution with the best
utility (Lines 10-13) is finally selected. We introduce two
policies to guide the behaviour of the scheduler (Line 21)
below for updating the ready subtask queue RQ. Note that
a scheduling policy must preserve precedence relationships
among subtasks. In addition, a scheduling decision taken
by a policy must take into consideration the droplet-routing
cost (inter-processor communication cost).

1. First-Come-First-Served (FCFS): A static policy in which
the ready subtasks are prioritized based on their resource-
request time. Note that the resource-access time for a sub-
task τ i

b depends on the finish time of the preceding subtasks.

This static approach is oblivious to bioassay deadlines.

2. Least-Progression-First (LPF): A dynamic policy in which
the task that belongs to the least-progressing bioassay is
selected first. The least-progressing bioassay is a bioassay
that is most likely to miss its deadline and its tasks ur-
gently need to be advanced. This policy is similar to the
Least-Laxity-First policy [17]. Quantifying the progression
of bioassay execution is performed through a utility func-
tion f(Db, t, s, n) = (Db−t)(1− s

n
), where Db is the bioassay

deadline, t is the elapsed time since the bioassay has started,
s is the number of time steps completed by this bioassay, and
n is the summation of the number of time steps for all the
bioassay operations. Note that the least-progressing bioas-
say has the lowest utility value.

We are given a set RQ of ready subtasks. We determine the
processing time, the start time, and the finish time of every
subtask in RQ and ensure that a subtask can get hold of the
pre-assigned resource at time t (Line 25). Note that a task
τb that is not completed by the deadline is suspended until
sample replenishment is carried out (Lines 22-24). Based
on the scheduling choices, the synthesis algorithm (using
the one-pass algorithm in [28]) is invoked to generate the
actuation sequences (Line 12).

The scheduling scheme developed in this work is based on
a timewheel that is controlled by an entity known as the
coordinator and a priority queue, that is used to enforce the
policy. The sequence of actions involved in our scheduling
scheme is illustrated in Fig. 6.

4.3 Scheduling-Policy Analysis
We analyze the scheduling policies explained above using
the example in Fig. 7. We consider two cases: (i) Case A:
a case where a limited-resource chip is given; (ii) Case B:
a case where an unlimited-resource chip is given. In Case
A, we consider a biochip with a single mixer M , a single
optical detector D, and a single waste reservoir W that is
used to discard droplets. In both Case A and Case B, we
consider a dedicated reservoir for each dispensing operation;
i.e., unique resources Ab, Ob, and Hb for each task τb. The
task set consists of three tasks τ1, τ2, and τ3, which have re-
lease times φ1 = φ2 = φ3 = 0. The DAG representation for
these tasks is shown in Fig. 7. The letters inside the nodes
indicate the assigned resources. Also, the numbers above the
nodes (shown in black) represent the worst-case processing
time resulting from task assignment, and the numbers shown
in red represent the droplet-routing cost. We consider that
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Figure 7: Illustration of scheduling fluidic tasks using FCFS and LPF polices with a limited-biochip setting.
Red lines indicate inter-processor communication costs (in time steps).

the replenishment steps are carried out using dedicated re-
sources in both Case A and Case B, and the time needed to
complete droplet replenishment is 8 time steps.

In Fig. 7, we demonstrate the timeline of the scheduling out-
put for FCFS and LPF when Case A is considered. The re-
sults show that LPF outperforms FCFS for a limited-biochip
setting. The reason is that LPF dynamically adapts the pri-
orities of tasks based on their progression. For example, at
time t (shown in Fig. 7), all tasks are competing for M . The
utility value f of τ1, τ2, and τ3 at this time are 5.625, 22.75,
and 11.2, respectively. As a result, τ1, with the least utility,
is selected to process upon M starting at t. The completion
times for FCFS and LPF are 34 and 27, respectively.

Nevertheless, we expect that both approaches converge to an
equivalent lower-bound completion time when we increase
the number of on-chip resources. Given the same set of tasks
and considering Case B, the number of biochip resources is
∑n

b=1 zb = 7+ 7+ 4 = 18; i.e., there is a dedicated resource

for each subtask τ i
b . In this case, it is easy to demonstrate

that task scheduling depends only on the timing character-
istics of a given task set, and that the computed completion
time represents the lower-bound, based on a specific task
assignment. We introduce the following definition that aids
in our explanation [6]:

Definition 1. A chain in a DAG task τb is the sequence
of vertices V 1

b , V
2
b , ..., V

l
b that forms a DAG Gb such that

(V j

b ,V
j+1
b ) is an edge in Gb. The length of this chain is

specified after task assignment and it is the sum of the
processing times of all its vertices and the linking edges:
T 1
b (r1) +

∑l

j=2 T
j

b (rj) + Cb(j − 1, j, ri−1, rj), where T
j

b (rj)

is the processing time incurred by resource Rrj and Cb(j −

1, j, ri−1, rj) is the cost of the edge (V j−1
b ,V j

b ). We denote
by len(Gb) the length of the longest chain in Gb.

In Case B, the completion times obtained by FCFS and LPF
are equal and they can be defined using the following equa-
tion: T ∗

PF = max
∀b:Gb

len(Gb). According the task set given3

in Fig. 7, T ∗
PF = max(17, 17, 12) = 17, which is the lower-

bound completion time for FCFS and LPF when the number
of resources are increased; this finding is corroborated using
simulations in Section 5.1.

3Consider a unit routing cost between the two M operations
in τ1 and τ2.
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Figure 8: Lookahead-based execution for a sample
pathway. The progression of the sample is modeled
as a decision tree.

The worst-case time complexity of the above algorithm is
O(Υ.n.|R|) when FCFS is used and O(Υ.n2.|R|) when LPF
is used. The algorithm is invoked whenever there is a de-
cision that has been taken, necessitating a change in the
task assignments and schedules for the sample pathways. To
make use of the hierarchical system structure in Fig. 4, the
execution of the algorithm needs to be interleaved with elec-
trode actuation and firmware computation. An approach
for employing this scheme is to run the task-assignment and
scheduling algorithm in a lookahead manner. The progres-
sion of a sample pathway through a sequence of bioassays,
based on the flow decisions, is modeled as a decision tree.
While CM1 executes a bioassay at the qth level, CM3 con-
currently carries out task assignment and scheduling con-
sidering all choices at the (q + 1)th level. Subsequently, the
appropriate assignments and schedules are selected based on
the detection results obtained from CM2. Note that CM3

must complete computation of the (q+1)th level before CM1

finishes the execution at the qth level. Fig. 8 depicts the
timeline of a lookahead-based execution for a pathway.

5. SIMULATION RESULTS AND EXPERI-

MENTAL DEMONSTRATION
We implemented the proposed heuristic algorithm using C++.
The set of bioassays of the quantitative gene-regulation pro-
tocol (described in Section 2) were used as a benchmark. A
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Figure 9: Completion times and replenishment overhead for three task-scheduling schemes—baseline, FCFS,
and LPF—running (a) short homogeneous pathways, (b) long homogeneous pathways, (c) heterogeneous
pathways.

comprehensive analysis of the algorithm is performed based
on three groups of evaluations: (1) evaluation of schedul-
ing policies using simulation-based analysis; (2) compari-
son with previous resource-allocation techniques; (3) real-
time experimental demonstration using an embedded micro-
controller. Simulation-based assessment was carried out us-
ing an Intel Core i7, 3 GHz CPU with 16 GB RAM.

5.1 Evaluation of Scheduling Policies
Since most of the previous design-automation methods have
not considered multiple sample pathways, we derive a base-
line in which the protocol is executed for each sample sep-
arately. Therefore, we evaluate the performance for three
task-scheduling schemes: (1) the baseline; (2) FCFS; (3)
LPF. The metrics of comparison include: (1) the total com-
pletion time for the protocol (including replenishment time);
(2) the time overhead incurred by replenishment procedures
due to deadline violation; all measured in time steps. The
results were obtained for various chip sizes, which are rep-
resented in terms of the number of biochip resources (e.g.,
heaters, mixers, and detectors); see Fig. 5. The deadlines
for bioassays were obtained using offline simulation—each
bioassay was simulated for various chip sizes and then the
longest completion time was considered as a deadline.

We consider three samples being concurrently subjected to
fluidic operations. The samples are S1 (GFP gene-targeted
sample), S2 (YFP gene-targeted sample, and S3 (actin gene-
targeted sample). We consider three different cases in terms
of the sample pathways: (1) Short homogeneous pathways
(Case I): a case where all three samples follow the same
shortest pathway (12 bioassays in each pathway); (2) Long
homogeneous pathways (Case II): a case where all three sam-
ples follow the same long pathway (16 bioassays in each
pathway); (3) Heterogeneous pathways (Case III): a case
where these samples are different (the three pathways are
comprised of 12, 14, and 16 bioassays, respectively).

Fig. 9 compares the three scheduling schemes in terms of
completion times for the three cases. Although the baseline
scheme does not provide resource sharing (hence no deadline
violation occurs), it leads to the highest completion times
for all chip sizes. We also observe that LPF provides lower
completion time compared to FCFS for tight resource con-
straints. This result corroborates our analysis in Section 4.3,
in which we demonstrated that LPF is a deadline-driven ap-
proach and it achieves less tardiness, compared to FCFS.
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Figure 10: Scalability of the scheduling schemes
with a varying number of homogeneous pathways;
(a) using a biochip with four resources, (b) using a
biochip with seven resources.

We also estimate the overhead incurred due to replenish-
ment when FCFS and LPF are used. Without loss of gen-
erality, we assume that a replenishment procedure takes 10
time steps in the worst case. It is obvious that LPF incurs
less replenishment overhead for all chip sizes, as shown in
Fig. 9. As a result, compared to FCFS, the priority scheme
of the LPF scheduler is more effective in countering droplet
evaporation while the protocol completion time is not sig-
nificantly increased. Also, it is noteworthy to mention that
the difference in protocol completion time between LPF and
FCFS gradually decreases when the number of biochip re-
sources is increased; see Fig. 9. This finding also adheres to
our analytical study performed in Section 4.3.

Next, we explore scalability of the three scheduling schemes.
We analyze the completion time as the number of homoge-
neous pathways is varied; see Fig. 10. We observe that,
as expected, the baseline scheme does not scale with the
number of samples, since its completion time increases con-
siderably when the number of samples is increased.

5.2 Comparison with Recent Work on Resource

Allocation [12]
We next compare the completion time and resource utiliza-
tion of our real-time scheduling approach (using LPF) with
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resource-allocation techniques proposed in [12]. This work
introduced two schemes to derive upper and lower bounds
on protocol completion time considering resource sharing.
These schemes are: (i) restricted resource sharing (RR): a
scheme that fully restricts the reconfigurability of shared re-
sources among bioassays; (ii) unrestricted resource sharing
(UR): a scheme that does not consider any restrictions on
resource sharing.

For comparison, we use a simulation environment similar to
that in [12], in which a gene-expression analysis protocol is
used. The minimum resource requirements as well as fluid-
handling operations are re-used from [12]. We utilize three
short homogeneous sample pathways (as in [12]), but the
conclusions of this simulation holds also for other cases. The
biochip architecture consists of seven resources: two mixers,
two optical detectors, one magnet, one heater, and one CCD
camera. The utilization profile of a resource Rr over the
course of the protocol execution is denoted by ur(t), where
ur(t) = 1 indicates that resource Rr is used for execution
during the time step [t, t + 1], whereas ur(t) = 0 indicates
that the resource is idle during the same time step. The
summation of the utilization profiles of all chip resources
is referred to as cumulative system utilization U(t); thus
U(t) =

∑7
r=1 ur(t). This function gives an indication of how

efficiently chip resources are used by a resource-allocation
scheme over time. We use this function to derive the mean
overall system utilization U to compare system utilization
of resource-allocation schemes using numerical values. The
paremeter U is calculated as follows:

U =

∫ TPF

0
U(t).dt

TPF

(2)

where TPF is the protocol completion time. An upper-
bound for U is equal to the number of chip resources; i.e.,
U ∈ [0, 7]. Note that higher U signifies better resource uti-
lization. Although our real-time scheduler takes into consid-
eration droplet-routing overhead, we ignore this cost in our
comparison.

Fig. 11(a) compares the three resource-management schemes
based on the completion time for gene-expression analysis.
It is obvious that the proposed real-time scheduler, i.e., the
LPF scheduler, achieves the shortest completion time, com-
pared to the resource-allocation schemes in [12]. As ex-
pected, RR sharing leads to the worst-case completion time

due to the restrictions imposed on resource sharing.

Next, we analyze the resource utilization that results from
the resource-management schemes, based on two metrics:
(1) percentage of resource time used effectively by protocol
execution; (2) U . The results for the former metric is illus-
trated in Fig. 11(b). Using the LPF scheduler, 32.13% of the
overall resource time is effectively used to execute protocol
fluid-handling operations, whereas only 25.53% and 28.34%
of the overall resource time are effectively used by RR shar-
ing and UR sharing, respectively. Note that resource allo-
cation in [12] is carried out at the bioassay level; hence a
set of resources might be reserved to execute a bioassay, but
not used until the associated fluid-handling operations are
invoked. As a result, both RR sharing and UR sharing incur
a time cost due to reserving, but not using, chip resources;
see Fig. 11(b).

Finally, results involving the parameter U for resource uti-
lization are shown in Fig. 11(c). The proposed LPF sched-
uler achieves the best cumulative system utilization (U =
2.5), compared to RR sharing (U = 1.786) and UR sharing
(U = 1.98), respectively. These results indicate that the
proposed real-time scheduler is more cost-effective and it is
applicable for tighter resource-budget cases.

5.3 Experimental Demonstration
We next demonstrate the application of hierarchical schedul-
ing using a commercial off-the-shelf micro-controller (TI 16-
bit MSP430 100-pin target board; see Fig. 12(b)). An os-
cilloscope is used to probe signals generated from the com-
ponents CM1, CM2, and CM3—the experimental setup is
shown in Fig. 12(a). The generated waveform is shown in
Fig. 12(c), where the blue signal indicates the synthesized
time steps based on the task scheduler (CM3), the green
signal represents the actuation pulses (CM1), and the yel-
low pulse reflects firmware computation (CM2) based on a
detection operation.
Our experimental target was to execute gene-expression anal-
ysis using two sample pathways. For testing and verification
purposes, we generate a hypothetical, but feasible, stream of
data to mimic the data transfer between the hardware and
the control software. This data was obtained by simulat-
ing the gene-expression analysis protocol with two sample
pathways.

A timer-interrupt module was utilized to trigger periodic
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Figure 12: Experimental demonstration of hierar-
chical scheduling. (a) Experimental setup. (b) The
16-bit MSP430 100-pin target board. (c) Probed
signals from CM1 (green), CM2 (yellow), and CM3

(blue).

actuation tasks while the task scheduler was running. This
mechanism provides flexible tuning for the actuation clock
depending on the developed application [19]. The firmware
tasks were also realized through a set of interrupt service
routines (ISRs) and invoked after each (simulated) detection
operation. The selection of an ISR depends on the type of
detection method assumed, e.g., CCD-camera monitoring
of cell culture or fluorescence detection of amplified nucleic
acid.

The outcome of the experiment matches the lookahead tim-
ing model described in Section 4.2. This experiment lays
the foundations for developing and testing the key hard-
ware/software co-design components for real-time DMFBs
that can be used in realistic microbiology protocols.

6. CONCLUSION
We have introduced a design-automation method for a cyber-
physical DMFB that performs quantitative epigenetic gene-
regulation analysis. The design is based on real-time multi-
processor scheduling; it provides dynamic adaptation to pro-
tocol decisions under spatio-temporal constraints. We have
also presented a hierarchical structure to illustrate the coor-
dination between the synthesis of multiple pathways, elec-
trode actuation, and firmware computation. A heuristic al-
gorithm has been presented for the NP-hard task-scheduling
problem. An experimental demonstration has been provided
using a micro-controller board to show the interaction be-
tween the scheduling algorithm and other components.

Our ongoing work is focused on the integration of a fabri-
cated biochip with the proposed design methodology. The
work presented in this paper will be an important compo-
nent of such an integrated hardware/software demonstration
of a quantitative-analysis protocol.
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